Home
Class 12
MATHS
If y = sqrt(2^x+sqrt(2^x+sqrt(2^x+…........

If `y = sqrt(2^x+sqrt(2^x+sqrt(2^x+….......oo)))`, then prove that : `(2y-1)dy/dx = 2^x log2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sqrt(5^x+sqrt(5^x+sqrt(5^x+….......oo))) , then prove that : (2y-1)dy/dx = 5^x log5 .

If y = sqrt(3^x+sqrt(3^x+sqrt(3^x+….......oo))) , then prove that : (2y-1)dy/dx = 3^x log3 .

If y = sqrt(x+ sqrt(x + sqrt(x + ......oo))) , show that (2y - 1) (dy)/(dx) = 1

If y = sqrt(log x + sqrt(logx + sqrt(log x + .....oo))) , prove that (2y - 1) (dy)/(dx) = 1/x

y = sqrt(sin x + sqrt(sinx + sqrt(sinx + ....1 oo))) prove that (2y - 1) (dy)/(dx) = cos x

y = sqrt(tan x + sqrt(tanx + sqrt(tanx + ...."to" oo))) prove that (2y - 1) (dy)/(dx) = sec^2 x .

y = sqrt(cos x + sqrt(cosx + sqrt(cosx + ...."to " oo))) prove that (2y - 1) (dy)/(dx) = - sin x

"If "y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo))))," then prove that "(dy)/(dx)=(y^(2)-x)/(2y^(3)-2xy-1)

If y=sqrt(cosx+sqrt(cosx+sqrt(cosx+...tooo))), prove that (dy)/(dx)=(sinx)/(1-2y)

Let y=sqrt(x+sqrt(x+sqrt(x+...oo)))," then "(dy)/(dx) is equal to