Home
Class 12
MATHS
x= sin^3t/sqrt x cos2t, y= cos^3t/ sqrt ...

`x= sin^3t/sqrt x cos2t`, `y= cos^3t/ sqrt x cos2t`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx : x = sin^3t/sqrt cos 2t, y = cos^3t/sqrt cos 2t

Find dy/dx if x = (sin^3t)/(sqrtcos2t), y = (cos^3t)/(sqrtcos2t)

Find dy/dx when x = e^t (sin t + cos t), y = e^t (sin t - cos t)

x= a sin 2t(1 + cos2t) and y = b cos 2t(1- cos 2t) , show that [(dy/dx)_(t=pi/4) =b/a] .

If (x=a sin (2t)(1+cos(2t)) and (y=b cos (2t) (1- cos(2t)) , then show that ((dy/dx)_(t=pi/4) =b/a) .

If x= 3 sin t - sin 3t, y = 3 cos t - cos 3t, find d^2 y/dx^2 at t= pi/3

If x = a sin 2 t(1+cos 2t) and y = b cos 2t(1-cos 2t), find: the value of dy/dx at t = pi/4 and t = pi/3

Find the equation of tangent to the curve given by x = a sin^3 t, y = b cos^3 t at a point where t = pi/2 .

Find dy/dx at t = pi/4 when x e^(-t) (sin t + cos t ) and y = e^-t (sin t - cost)