Home
Class 12
MATHS
x = a (theta - sin theta), y = a (1 + co...

`x = a (theta - sin theta), y = a (1 + cos theta)` find dy/dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (d^2y)/(dx^2) in the following If x = a (theta + sin theta) , y = a(1 - cos theta) , find (d^2y)/(dx^2) at theta = pi/2

Find (dy)/(dx) in the following x = a(theta - sin theta), y = a (1 + cos theta)

Find (d^2y)/dx^2 , if x = a (theta - sin theta), y = a(1+cos theta)

Find (dy^2)/(dx^2) in the following : x = a (theta - sin theta), y = a (1+costheta)

Find dy/dx when x=a (theta + sin theta), y = a(1 + cos theta)

If [x= a{theta - sin(theta)] and [y= a{1 - cos (theta)] find [d^2y/dx^2 at (theta = pi/2)

Find (d^2y)/(dx^2) at theta = pi/2 when: x=a(theta - sin theta), y = a(1-costheta)

Find dy/dx when x= a (theta + sin theta), y = a(1+cos theta)