Home
Class 12
MATHS
If y = e^[ax] sin bx, prove that d^2y/dx...

If `y = e^[ax] sin bx`, prove that `d^2y/dx^2 - 2a dy/dx +(a^2 + b^2 ) y = 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^2 = ax^2 + b , prove that (d^2y)/(dx^2) = ab/y^3

If y = e^x (sinx + cosx) , prove that (d^2y)/(dx^2)- 2(dy)/(dx) + 2y = 0

If y = e^(-ax) cos (bx + c) , show that (d^2y)/(dx^2) + 2a(dy)/(dx) + (a^2 + b^2) y = 0

lf y=3e^(2x) +2e^(3x) , prove that d^2y/dx^2 - 5dy/dx +6y =0 .

If y = 2 cos x -6 sin x , prove that (d^2y)/(dx^2)+y = 0

y = 5 cos x - 3 sin x , prove that (d^2 y)/(dx^2) + y = 0

If y = sin^-1 x , show that : (1-x^2) d^2y/dx^2- x dy/dx=0

If y = A sinx + B cosx then prove that d^2y/dx^2 + y = 0

If siny = xsin(a+y) , prove that dy/dx=sin^2(a+y)/sina