Home
Class 11
PHYSICS
Find the angle between force vec(F) =(3h...

Find the angle between force `vec(F) =(3hat(i)+4hat(j)-5hat(k))` unit and displacement `vec(d)=(5hat(i)+4hat(j)+3hat(k))` unit , Also find the projection of F on d .

Text Solution

Verified by Experts

`vec(F) =3hat(i)+4hat(j)-5hat(k)`
`vec(d) =5hat(i)+4hat(j)+3hat(k)`
`vec(F).vec(d) =(3hat(i)+4hat(j)-5hat(k)).(5hat(i)+4hat(j)+3hat(k))`
` = 15+16 - 15`
= 16 unit
` | vec(F) | = sqrt((3)^(2)+(4)^(2)+(-5)^(2))`
`= sqrt(9+16+25)`
` =sqrt(50)`
`|vec(F)| =sqrt((3)^(2)+(4)^(2)+(-5)^(2))`
`=sqrt(25+16+9)`
`= sqrt(50)`
`|vec(d)|=sqrt((3)^(2)+(4)^(2)+(-5)^(2))`
Now `vec(F).vec(d) =| vec(F) | |vec(d)| cos theta `
` :. cos theta= (vec(F).vec(d))/(|vec(F)||vec(d)|)`
`= 16/((sqrt(15))(sqrt(50)))`
` =16/15`
` :. cos theta =0.32`
`sin(90^(@) - theta) = 0.32 `
`90^(@) - theta =18^(@)40`
` :. theta = 90^(@) - 18^(@) 40`
` :. theta = 71^(@) 21 `
Projection of F on d
=`F cos theta `
` = sqrt(50) xx0.32 `
` = 2.263` N
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • WORK, ENERGY AND POWER

    KUMAR PRAKASHAN|Exercise SECTION - B Numericals (Numerical From Textual Exercise)|42 Videos
  • WORK, ENERGY AND POWER

    KUMAR PRAKASHAN|Exercise SECTION - B Numericals (Numerical From .DARPAN. Based On Textbook)|15 Videos
  • WORK, ENERGY AND POWER

    KUMAR PRAKASHAN|Exercise SECTION - A Questions - Answers (Try Yourself (VSQs))|74 Videos
  • WAVES

    KUMAR PRAKASHAN|Exercise SECTION-F (Questions From Module) (Sample questions for preparation of competitive exams)|23 Videos

Similar Questions

Explore conceptually related problems

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)

If the angle between vec(A) = 2hat(i)+4hat(j)+2hat(k) and vec(B) =2hat(i) +hat(k) " is " 30^(@) , then find the projection of vec(B ) on A .

The compenent of vec(A)=hat(i)+hat(j)+5hat(j) perpendicular to vec(B)=3hat(i)+4hat(j) is

What is the length of projection of vec(A)=3hat(i)+4hat(j)+5hat(k) on xy plane ?

Angle between the vectors vec(a)=-hat(i)+2hat(j)+hat(k) and vec(b)=xhat(i)+hat(j)+(x+1)hat(k)

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

Find the components of vector vec(a)=3hat(i)+4hat(j) along the direction of vectors hat(i)+hat(j) & hat(i)-hat(j)

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-