Home
Class 11
PHYSICS
The sun's angular diameter is measured t...

The sun's angular diameter is measured to be 1920''. The distance of the sun from the earth is `1.496xx10^(11)m.` What is the diameter of the sun?

A

`A. 1.39xx10^(9)m`

B

`B. 1.39xx10^(10)m`

C

`C. 1.39xx10^(11)m`

D

`D.1.39xx10^(12)`m

Text Solution

AI Generated Solution

The correct Answer is:
To find the diameter of the sun based on its angular diameter and the distance from the Earth, we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Given Values**: - The angular diameter of the sun, \( \theta = 1920'' \) (arcseconds). - The distance from the Earth to the sun, \( R = 1.496 \times 10^{11} \, \text{m} \). 2. **Convert Angular Diameter from Arcseconds to Radians**: - First, convert arcseconds to degrees: \[ \theta_{\text{degrees}} = \frac{1920 \, \text{arcseconds}}{3600 \, \text{arcseconds per degree}} = \frac{1920}{3600} \, \text{degrees} \] - Next, convert degrees to radians: \[ \theta_{\text{radians}} = \theta_{\text{degrees}} \times \frac{\pi}{180} \] - Therefore: \[ \theta_{\text{radians}} = \left(\frac{1920}{3600}\right) \times \frac{\pi}{180} \] 3. **Calculate the Diameter of the Sun**: - The formula for the diameter \( d \) based on the angular diameter \( \theta \) and distance \( R \) is: \[ d = R \cdot \theta \] - Substitute the values: \[ d = 1.496 \times 10^{11} \, \text{m} \times \left(\left(\frac{1920}{3600}\right) \times \frac{\pi}{180}\right) \] 4. **Perform the Calculations**: - Calculate \( \theta_{\text{radians}} \): \[ \theta_{\text{radians}} = \left(\frac{1920}{3600}\right) \times \frac{\pi}{180} \approx 0.000533 \, \text{radians} \] - Now calculate \( d \): \[ d = 1.496 \times 10^{11} \, \text{m} \times 0.000533 \approx 1.39 \times 10^{9} \, \text{m} \] 5. **Final Result**: - The diameter of the sun is approximately \( 1.39 \times 10^{9} \, \text{m} \). ### Conclusion: The correct answer is option A: \( 1.39 \times 10^{9} \, \text{m} \).

To find the diameter of the sun based on its angular diameter and the distance from the Earth, we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Given Values**: - The angular diameter of the sun, \( \theta = 1920'' \) (arcseconds). - The distance from the Earth to the sun, \( R = 1.496 \times 10^{11} \, \text{m} \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • UNITS AND MEASUREMENTS

    NCERT FINGERTIPS ENGLISH|Exercise Higher Order Thinking Skills|10 Videos
  • UNITS AND MEASUREMENTS

    NCERT FINGERTIPS ENGLISH|Exercise Exemplar Problems|12 Videos
  • THERMODYNAMICS

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos
  • WAVES

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos