Home
Class 11
MATHS
x=acost , y=asint then (d^2(y))/dx^2 at ...

`x=acost , y=asint` then `(d^2(y))/dx^2` at `t = pi/3, pi/6, pi/2, pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=acost,x=asint , then find (d^(2)y)/(dx^(2)) at t=pi/3 .

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x=tcost ,y=t+sint . Then (d^2 x)/(dy^2) at t=pi/2 is (a) (pi+4)/2 (b) -(pi+4)/2 (c) -2 (d) none of these

If x=tcost ,y=t+sint . Then (d^2 x)/(dy^2) at t=pi/2 is (a) (pi+4)/2 (b) -(pi+4)/2 (c) -2 (d) none of these

x=tcost ,y=t+sintdot Then (d^(2x))/(dy^2)at t=pi/2 is (a)(pi+4)/2 (b) -(pi+4)/2 (c) -2 (d) none of these

x=t cos t,y=t+sin t. Then (d^(2)tau)/(dy^(2)) at t=(pi)/(2) is (pi+4)/(2)(b)-(pi+4)/(2)-2(d) none of these

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4