Home
Class 12
PHYSICS
The voltage over a cycle varies as V=V...

The voltage over a cycle varies as
`V=V_(0)sin omega t` for `0 le t le (pi)/(omega)`
`=-V_(0)sin omega t` for `(pi)/(omega)le t le (2pi)/(omega)`
The average value of the voltage one cycle is

A

`(V_(0))/(sqrt(2))`

B

`(V_(0))/(2)`

C

zero

D

`(2V_(0))/(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the average value of the voltage over one complete cycle, we can follow these steps: ### Step 1: Define the voltage function The voltage function is given as: - \( V = V_0 \sin(\omega t) \) for \( 0 \leq t \leq \frac{\pi}{\omega} \) - \( V = -V_0 \sin(\omega t) \) for \( \frac{\pi}{\omega} < t \leq \frac{2\pi}{\omega} \) ### Step 2: Set up the average voltage formula The average value of voltage \( V_{\text{avg}} \) over one complete cycle (from \( t = 0 \) to \( t = \frac{2\pi}{\omega} \)) can be calculated using the formula: \[ V_{\text{avg}} = \frac{1}{T} \int_0^T V(t) \, dt \] where \( T = \frac{2\pi}{\omega} \). ### Step 3: Split the integral We can split the integral into two parts: \[ V_{\text{avg}} = \frac{1}{T} \left( \int_0^{\frac{\pi}{\omega}} V_0 \sin(\omega t) \, dt + \int_{\frac{\pi}{\omega}}^{\frac{2\pi}{\omega}} -V_0 \sin(\omega t) \, dt \right) \] ### Step 4: Calculate the first integral For the first integral: \[ \int_0^{\frac{\pi}{\omega}} V_0 \sin(\omega t) \, dt \] Using the integral of sine: \[ \int \sin(x) \, dx = -\cos(x) \] Thus, \[ \int_0^{\frac{\pi}{\omega}} V_0 \sin(\omega t) \, dt = V_0 \left[ -\frac{1}{\omega} \cos(\omega t) \right]_0^{\frac{\pi}{\omega}} = V_0 \left( -\frac{1}{\omega} \left( -1 - 1 \right) \right) = \frac{2V_0}{\omega} \] ### Step 5: Calculate the second integral For the second integral: \[ \int_{\frac{\pi}{\omega}}^{\frac{2\pi}{\omega}} -V_0 \sin(\omega t) \, dt \] This can be calculated similarly: \[ -V_0 \left[ -\frac{1}{\omega} \cos(\omega t) \right]_{\frac{\pi}{\omega}}^{\frac{2\pi}{\omega}} = -V_0 \left( -\frac{1}{\omega} \left( 1 - (-1) \right) \right) = \frac{2V_0}{\omega} \] ### Step 6: Combine the results Now, we can combine both integrals: \[ V_{\text{avg}} = \frac{1}{T} \left( \frac{2V_0}{\omega} + \frac{2V_0}{\omega} \right) = \frac{1}{\frac{2\pi}{\omega}} \left( \frac{4V_0}{\omega} \right) = \frac{2V_0}{\pi} \] ### Final Answer Thus, the average value of the voltage over one complete cycle is: \[ V_{\text{avg}} = \frac{2V_0}{\pi} \]

To find the average value of the voltage over one complete cycle, we can follow these steps: ### Step 1: Define the voltage function The voltage function is given as: - \( V = V_0 \sin(\omega t) \) for \( 0 \leq t \leq \frac{\pi}{\omega} \) - \( V = -V_0 \sin(\omega t) \) for \( \frac{\pi}{\omega} < t \leq \frac{2\pi}{\omega} \) ### Step 2: Set up the average voltage formula ...
Promotional Banner

Topper's Solved these Questions

  • ALTERNATING CURRENT

    NCERT FINGERTIPS ENGLISH|Exercise HOTS|8 Videos
  • ALTERNATING CURRENT

    NCERT FINGERTIPS ENGLISH|Exercise NCERT|7 Videos
  • ATOMS

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos

Similar Questions

Explore conceptually related problems

The average value of an alternating voltage V=V_(0) sin omega t over a full cycle is

The average value of an alternating voltage V=V_(0) sin omega t over a full cycle is

Find the rms value of current i=I_(m)sin omegat from (i) t=0 "to" t=(pi)/(omega) (ii) t=(pi)/(2omega) "to" t=(3pi)/(2omega)

The average value of current i=I_(m) sin omega t from t=(pi)/(2 omega ) to t=(3 pi)/(2 omega) si how many times of (I_m) ?

The average value of current i=I_(m) sin omega t from t=(pi)/(2 omega ) to t=(3 pi)/(2 omega) si how many times of (I_m) ?

The average value of alternating current I=I_(0) sin omegat in time interval [0, pi/omega] is

An alternating voltage is given by: e = e_(1) sin omega t + e_(2) cos omega t . Then the root mean square value of voltage is given by:

An alternating voltage is given by: e = e_(1) sin omega t + e_(2) cos omega t . Then the root mean square value of voltage is given by:

In y= A sin omega t + A sin ( omega t+(2 pi )/3) match the following table.

If i_(1)=3 sin omega t and (i_2) = 4 cos omega t, then (i_3) is

NCERT FINGERTIPS ENGLISH-ALTERNATING CURRENT -Assertion And Reason
  1. The voltage over a cycle varies as V=V(0)sin omega t for 0 le t le (...

    Text Solution

    |

  2. Assertion : An alternating current does not show any magnetic effect. ...

    Text Solution

    |

  3. Assertion: Average value of AC over a complete cycle is always zero. ...

    Text Solution

    |

  4. Assertion : The capacitive reactance limits the amplitude of the curre...

    Text Solution

    |

  5. Assertion : The inductive reactance limits amplitude of the current in...

    Text Solution

    |

  6. Assertion : In series LCR resonance circuit, the impedance is equal to...

    Text Solution

    |

  7. Assertion : In a purely inductive or capacitive circuit, the current i...

    Text Solution

    |

  8. Assertion : The only element that dissipates energy in an ac circuit i...

    Text Solution

    |

  9. Assertion : The power in ac circuit is minimum if the circuit has only...

    Text Solution

    |

  10. Assertion : Resonance is exhibited by a circuit only if both L and C a...

    Text Solution

    |

  11. Assertion : When a current flows in the coil of a transformer then its...

    Text Solution

    |

  12. Assertion : An ideal transformer does not vary the power. Reason : A...

    Text Solution

    |

  13. Assertion : A step-up transformer changes a low voltage into a high vo...

    Text Solution

    |

  14. Assertion : A given transformer can be used to step-up ot step-down th...

    Text Solution

    |

  15. Assertion : A laminated core is used in transformers to increase eddy ...

    Text Solution

    |

  16. Assertion : A transformer cannot work on dc supply. Reason : dc chan...

    Text Solution

    |