Home
Class 11
PHYSICS
What is the value of linear velocity, if...

What is the value of linear velocity, if `vecomega=3hati-4hatj+hatk` and `vecr=5hati-6hatj+6hatk`?

A

`6hati+2hatj-3hatk`

B

`18hati+3hatj-2hatk`

C

`-18hati-13hatj+2hatk`

D

`6hati-2hatj+8hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the linear velocity vector \( \vec{V} \) given the angular velocity vector \( \vec{\omega} \) and the position vector \( \vec{r} \), we use the formula: \[ \vec{V} = \vec{\omega} \times \vec{r} \] Given: \[ \vec{\omega} = 3\hat{i} - 4\hat{j} + \hat{k} \] \[ \vec{r} = 5\hat{i} - 6\hat{j} + 6\hat{k} \] ### Step 1: Set up the cross product We will calculate the cross product \( \vec{V} = \vec{\omega} \times \vec{r} \). The cross product in determinant form is given by: \[ \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -4 & 1 \\ 5 & -6 & 6 \end{vmatrix} \] ### Step 2: Calculate the determinant To compute the determinant, we expand it as follows: \[ \vec{V} = \hat{i} \begin{vmatrix} -4 & 1 \\ -6 & 6 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ 5 & 6 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix} \] ### Step 3: Calculate each of the 2x2 determinants 1. For \( \hat{i} \): \[ \begin{vmatrix} -4 & 1 \\ -6 & 6 \end{vmatrix} = (-4)(6) - (1)(-6) = -24 + 6 = -18 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 3 & 1 \\ 5 & 6 \end{vmatrix} = (3)(6) - (1)(5) = 18 - 5 = 13 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix} = (3)(-6) - (-4)(5) = -18 + 20 = 2 \] ### Step 4: Substitute back into the equation Now substituting these values back into the equation for \( \vec{V} \): \[ \vec{V} = -18\hat{i} - 13\hat{j} + 2\hat{k} \] ### Final Result Thus, the linear velocity vector is: \[ \vec{V} = -18\hat{i} - 13\hat{j} + 2\hat{k} \] ---

To find the linear velocity vector \( \vec{V} \) given the angular velocity vector \( \vec{\omega} \) and the position vector \( \vec{r} \), we use the formula: \[ \vec{V} = \vec{\omega} \times \vec{r} \] Given: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SYSTEM OF PARTICLES AND ROTATIONAL MOTIONS

    NCERT FINGERTIPS ENGLISH|Exercise TORQUE AND ANGULAR MOMENTUM|11 Videos
  • SYSTEM OF PARTICLES AND ROTATIONAL MOTIONS

    NCERT FINGERTIPS ENGLISH|Exercise EQUILIBRIUM OF A RIGID BODY|13 Videos
  • SYSTEM OF PARTICLES AND ROTATIONAL MOTIONS

    NCERT FINGERTIPS ENGLISH|Exercise CENTRE OF MASS|8 Videos
  • PRACTICE PAPERS

    NCERT FINGERTIPS ENGLISH|Exercise All Questions|150 Videos
  • THERMAL PROPERTIES OF MATTER

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|10 Videos

Similar Questions

Explore conceptually related problems

What is the value of linear veloctity, if vecomega =hati-hatj+hatk and vecr=hati+2hatj+3hatk

For a body, angular velocity vecomega= hati-2hatj+3hatk and radius vector vecr=hati+hatj+hatk , then its velocity (vecv= vecomega xx vecr) is :

Knowledge Check

  • The linear velocity of rotating body is given by vecv = vecomega xx vecr where vecomega is the angular velocity and vecr is the radius vector. The angular velocity of body vecomega = hati - 2hatj + 2hatk and this radius vector vecr = 4hatj - 3hatk , then |vecv| is

    A
    `sqrt(29)` units
    B
    `sqrt(31)` units
    C
    `sqrt(37)` units
    D
    `sqrt(41)` units
  • Similar Questions

    Explore conceptually related problems

    (i) Find the sum of vectors veca=hati-2hatj+hatk , vecb=-2hati+4hatj+5hatk , and vecc=hati-hatj-7hatk (ii) Find the magnitude of the vector veca=3hati-2hatj+6hatk .

    Find the equation of the plane through the point hati+4hatj-2hatk and perpendicular to the line of intersection of the planes vecr.(hati+hatj+hatk)=10 and vecr.(2hati-hatj+3hatk)=18.

    Find the line of intersection of the planes vecr.(3hati-hatj+hatk)=1 and vecr.(hati+4hatj-2hatk)=2

    The vector parallel to the line of intersection of the planes vecr.(3hati-hatj+hatk) = 1 and vecr.(hati+4hatj-2hatk)=2 is :

    Find the angle between the vectors 4hati-2hatj+4hatk and 3hati-6hatj-2hatk.

    Unit vector perpnicular to vector A=-3hati-2hatj -3hatk and 2hati + 4hatj +6hatk is

    If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|