Home
Class 11
PHYSICS
The temperature of n moles of an ideal g...

The temperature of n moles of an ideal gas is increased from T to 4T through a process for which pressure `P=aT^(-1)` where a is a constant .Then the work done by the gas is

A

a. nRT

B

b. 4nRT

C

c. 2nRT

D

d. 6nRT

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the work done by the gas when the temperature of n moles of an ideal gas is increased from T to 4T under the given pressure condition \( P = aT^{-1} \). ### Step-by-Step Solution: 1. **Identify the Work Done Formula**: The work done \( dW \) by the gas during an infinitesimal change in volume is given by: \[ dW = P \, dV \] 2. **Substitute for Pressure**: We know from the problem that the pressure \( P \) is given by: \[ P = aT^{-1} \] 3. **Use Ideal Gas Law**: The ideal gas law states: \[ PV = nRT \] Rearranging this gives us the volume \( V \): \[ V = \frac{nRT}{P} \] Substituting for \( P \): \[ V = \frac{nRT}{aT^{-1}} = \frac{nRT^2}{a} \] 4. **Differentiate Volume**: To find \( dV \), we differentiate \( V \) with respect to \( T \): \[ dV = \frac{d}{dT}\left(\frac{nRT^2}{a}\right) = \frac{2nRT}{a} \, dT \] 5. **Substitute \( dV \) into Work Done**: Now substitute \( dV \) back into the work done formula: \[ dW = P \, dV = aT^{-1} \cdot \frac{2nRT}{a} \, dT \] The \( a \) cancels out: \[ dW = 2nR \, dT \] 6. **Integrate to Find Total Work Done**: Now we integrate \( dW \) from the initial temperature \( T \) to the final temperature \( 4T \): \[ W = \int_{T}^{4T} 2nR \, dT = 2nR \int_{T}^{4T} dT \] This evaluates to: \[ W = 2nR \left[ T \right]_{T}^{4T} = 2nR (4T - T) = 2nR (3T) = 6nRT \] ### Final Answer: Thus, the work done by the gas is: \[ W = 6nRT \]

To solve the problem, we need to calculate the work done by the gas when the temperature of n moles of an ideal gas is increased from T to 4T under the given pressure condition \( P = aT^{-1} \). ### Step-by-Step Solution: 1. **Identify the Work Done Formula**: The work done \( dW \) by the gas during an infinitesimal change in volume is given by: \[ dW = P \, dV ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    NCERT FINGERTIPS ENGLISH|Exercise HOTs|8 Videos
  • THERMODYNAMICS

    NCERT FINGERTIPS ENGLISH|Exercise Assertion & Reason|15 Videos
  • THERMAL PROPERTIES OF MATTER

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|10 Videos
  • UNITS AND MEASUREMENTS

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos

Similar Questions

Explore conceptually related problems

The temperature of n-moles of an ideal gas is increased from T_0 to 2T_0 through a process p=alpha/T . Find work done in this process.

Temperature of 1 mole of a gas is increased by 2^(@)C at constant pressure. Work done is :

Temperature of two moles of an ideal gas is increased by 300K in a process V=a/T , where a is positive constant. Find work done by the gas in the given process.

Temperature of 1mol of a gas is increased by 1^(@) at constant pressure. The work done is

Temperature of 1mol of a gas is increased by 1^(@) at constant pressure. The work done is

Temeprature of 1 mole of a gas is increased by 2^(@) at constant pressure, then work done is :

Temperature of one mole of a gas is increased by 1^(@) C at constant pressure. The work done on the system is

An ideal gas undergoes a process P→Q→R as shown in pressure (p) - volume (v) diagram.The work done by the gas is

One mole of an ideal diatomic gas is taken through a process whose P-V diagram is shown in the figure. The work done by the gas is

The molar heat capacity C for an ideal gas going through a given process is given by C=a/T , where 'a' is a constant. If gamma=C_p/C_v , the work done by one mole of gas during heating from T_0 to eta T_0 through the given process will be

NCERT FINGERTIPS ENGLISH-THERMODYNAMICS-Assertion And Reason
  1. The temperature of n moles of an ideal gas is increased from T to 4T t...

    Text Solution

    |

  2. Assertion: The zeroth law said that , when two systems A and B, are in...

    Text Solution

    |

  3. Assertion : When a bullet is fired from a gun the bullet pierces a woo...

    Text Solution

    |

  4. Assertion : First law of thermodynamics does not forbid flow of heat f...

    Text Solution

    |

  5. Assertion:A constant volume gas thermometer, reads temperature in term...

    Text Solution

    |

  6. Assertion: The isothermal curves intersect each other at a certain poi...

    Text Solution

    |

  7. Assertion : In an isothemal expansion the gas absorbs heat and does wo...

    Text Solution

    |

  8. Assertion : In an adiabatic process, change in internal energy of a ga...

    Text Solution

    |

  9. Assetion : The temperature of a gas does not change when it undergoes...

    Text Solution

    |

  10. Assertion : In an isolated system the entropy increases. Reason : Th...

    Text Solution

    |

  11. Assertion: A heat engine is the reverse of a refrigerator. Reason : ...

    Text Solution

    |

  12. Assertion : The efficiency of a heat engine can never be unity. Reas...

    Text Solution

    |

  13. Assetion : A refrigerator transfers heat from a lower temperature to a...

    Text Solution

    |

  14. Assertion : A quasi static isothermal expansion of an ideal gas in a c...

    Text Solution

    |

  15. Assertion: Thermodynamics process in nature are irreversible. Reason...

    Text Solution

    |

  16. Assetion : No engine can have efficiencyt greater than that of the car...

    Text Solution

    |