Home
Class 12
PHYSICS
Poynting vectors vec(S) is defined as ve...

Poynting vectors `vec(S)` is defined as `vec(S)=(1)/(mu_(0))vec(E)xx vec(B)`. The average value of `'vec(S)'` over a single period 'T' is given by

A

`E_(0)^(2)//2cmu_(0)`

B

`E_(0)^(2)//cmu_(0)`

C

`2E_(0)2^(2)//c mu_(0)`

D

`E_(0)^(2)//cmu_(0)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the average value of the Poynting vector \(\vec{S}\) over a single period \(T\), we start with the definition of the Poynting vector: \[ \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \] ### Step 1: Express the Electric and Magnetic Fields Assuming the electric field \(\vec{E}\) and magnetic field \(\vec{B}\) can be expressed as: \[ \vec{E} = E_0 \cos(kx - \omega t) \hat{i} \] \[ \vec{B} = B_0 \cos(kx - \omega t) \hat{j} \] where \(E_0\) and \(B_0\) are the maximum values of the electric and magnetic fields, respectively. ### Step 2: Calculate the Cross Product Now, we calculate the cross product \(\vec{E} \times \vec{B}\): \[ \vec{E} \times \vec{B} = (E_0 \cos(kx - \omega t) \hat{i}) \times (B_0 \cos(kx - \omega t) \hat{j}) \] Using the right-hand rule, we find: \[ \vec{E} \times \vec{B} = E_0 B_0 \cos^2(kx - \omega t) \hat{k} \] ### Step 3: Substitute into the Poynting Vector Substituting this result into the expression for \(\vec{S}\): \[ \vec{S} = \frac{1}{\mu_0} (E_0 B_0 \cos^2(kx - \omega t)) \hat{k} \] ### Step 4: Average Value Over One Period To find the average value of \(\vec{S}\) over one period \(T\), we need to calculate: \[ \langle \vec{S} \rangle = \frac{1}{T} \int_0^T \vec{S} \, dt \] Substituting for \(\vec{S}\): \[ \langle \vec{S} \rangle = \frac{1}{\mu_0} E_0 B_0 \left( \frac{1}{T} \int_0^T \cos^2(kx - \omega t) \, dt \right) \hat{k} \] ### Step 5: Evaluate the Integral The average value of \(\cos^2\) over one period is: \[ \int_0^T \cos^2(kx - \omega t) \, dt = \frac{T}{2} \] Thus, we have: \[ \langle \vec{S} \rangle = \frac{1}{\mu_0} E_0 B_0 \left( \frac{1}{2} \right) \hat{k} \] ### Step 6: Relate \(B_0\) to \(E_0\) Using the relationship between the electric and magnetic fields in electromagnetic waves: \[ B_0 = \frac{E_0}{c} \] where \(c\) is the speed of light. Substituting this into the equation gives: \[ \langle \vec{S} \rangle = \frac{1}{\mu_0} E_0 \left(\frac{E_0}{c}\right) \left( \frac{1}{2} \right) \hat{k} \] ### Step 7: Final Expression This simplifies to: \[ \langle \vec{S} \rangle = \frac{E_0^2}{2 \mu_0 c} \hat{k} \] ### Conclusion Thus, the average value of the Poynting vector over a single period \(T\) is: \[ \langle \vec{S} \rangle = \frac{E_0^2}{2 \mu_0 c} \hat{k} \]

To find the average value of the Poynting vector \(\vec{S}\) over a single period \(T\), we start with the definition of the Poynting vector: \[ \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \] ### Step 1: Express the Electric and Magnetic Fields Assuming the electric field \(\vec{E}\) and magnetic field \(\vec{B}\) can be expressed as: ...
Promotional Banner

Topper's Solved these Questions

  • ELECTROMAGNETIC WAVES

    NCERT FINGERTIPS ENGLISH|Exercise NCERT EXEMPLAR PROBLEMS|7 Videos
  • ELECTROMAGNETIC WAVES

    NCERT FINGERTIPS ENGLISH|Exercise ASSERTION & REASON CORNER|15 Videos
  • ELECTROMAGNETIC WAVES

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos
  • ELECTROMAGNETIC INDUCTION

    NCERT FINGERTIPS ENGLISH|Exercise NCERT Exemplar|6 Videos
  • ELECTROSTATIC POTENTIAL AND CAPACITANCE

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos

Similar Questions

Explore conceptually related problems

a, b are the magnitudes of vectors vec(a) & vec(b) . If vec(a)xx vec(b)=0 the value of vec(a).vec(b) is

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

What is the value of (vec(A) + vec(B)) .(vec(A) xx vec(B)) ?

If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1 , then

If two vectors vec(a) and vec (b) are such that |vec(a) . vec(b) | = |vec(a) xx vec(b)|, then find the angle the vectors vec(a) and vec (b)

If vec(a)vec(b)vec(c ) and vec(d) are vectors such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c ) = vec(b)xxvec(d) . Then show that the vectors vec(a) -vec(d) and vec(b) -vec(c ) are parallel.

If vec(a), vec(b) and vec(c) are three vectors such that vec(a) times vec(b)=vec(c) and vec(b) times vec(c)=vec(a)," prove that "vec(a), vec(b), vec(c) are mutually perpendicular and abs(vec(b))=1 and abs(vec(c))=abs(vec(a)) .

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

If vec(a).vec(b)=0 and vec(a) xx vec(b)=0, " prove that " vec(a)= vec(0) or vec(b)=vec(0) .