Home
Class 12
MATHS
If f(x) = (x - 1)/(x+1), x ne -1, Examin...

If `f(x) = (x - 1)/(x+1), x ne -1`, Examine whether f(x) is invertible or not. If f (x) is invertible, then find `^f-1 (x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (x -2)/(x-3), x ne 3 , Examine whether f(x) is invertible or not. If f(x) is invertible, then find f^-1 (x) .

If f(x) = (4x + 3)/(6x-4), x ne (2/3) , Examine whether f(x) is invertible or not. If f (x) is invertible, then find ^f-1 (x) .

If f(x) = (3x - 1)/(x+1), x ne (-1) then find fof (x).

If f(x) = (x-1)/(x+1) , x ne -1 then show that f(f(x)) =(-1)/x

If function f(x) = (x - l)/(x+1), x ne -1 is invertible in its domain, then find f^-1 (x) .

if f(x) = (x-1)/(x+1), x ne -1 , then show that : f(f(x)) = -1/x, x ne 0 .

If function f(x) = (x - 2)/(x-3), x ne 3 is invertible in its domain, then find f^-1 (x) .

If f(x)^2 xx f((1-x)/(1+x)) = 64 x, x ne 0,1 then f(x) is equal to

If f(x)=sinx+cosx, g(x)=x^(2)-1, then g(f(x)) is invertible in the domain

If function f(x) = (4x + 3)/(6x-4), x ne 2/3 is invertible in its domain, then find f^-1 (x) .