Home
Class 12
MATHS
Solve: tan^-1 (x+2) + tan^-1 (x-2) = tan...

Solve: `tan^-1 (x+2) + tan^-1 (x-2) = tan^-1 (frac{4}{19}), x>0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: tan^-1 (x+3) + tan^-1 (x-3) = tan^-1 (frac{4}{39}), x>0

Solve: tan^-1 (x+4) + tan^-1 (x-4) = tan^-1 (frac{4}{67}), x>0

Solve for x: tan^-1 (x+1) + tan^-1(x-1) = tan^-1 frac{8}{31}, x > 0

tan^-1 x - tan^-1 y= tan^-1 (frac{x-y}{1+xy} .

Solve the following equations: tan^-1(x+2) + tan^-1 (x-2) = tan^-1(8/79), x > 0

tan^-1 x + tan^-1y= tan^-1 (frac{x+y}{1-xy} ).

Solve the following equations: tan^-1(x+1) + tan^-1 (x-1) = tan^-1 (8/31), x > 0

Solve : tan^(-1)(x+2)+tan^(-1)(x-2)=tan^(-1)""(4)/(19),xgt0

Solve: tan^-1 2x + tan^-1 3x = frac{pi}{4}

Solve : 3 tan^-1(1/(2+sqrt3)) - tan^-1(1/x) = tan^-1(1/3)