Home
Class 12
MATHS
The value of the det. |[2,a,abc],[2,b,bc...

The value of the `det. |[2,a,abc],[2,b,bca],[2,c,cab]|` is

A

2 abc

B

abc

C

0

D

2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Use properties of determinants ot evaluate: {:|(2,a,abc),(2,b,bca),(2,c,cab)|

Write the value of det (2I_3)

Prove that |[[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]]|= abc (a-b)(b-c)(c-a)

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2) , is

Using properties of determinants, show that: |[[(b+c)^2, a^2, a^2],[b^2, (c+a)^2, b^2],[c^2,c^2,(a+b)^2]]|= 2abc (a+b+c)^3 .

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc) The minimum value of , where a, b, c in R^+ is

Let A= [[a,b,c],[p,q,r],[x,y,z]] and suppose then det (A) = 2, then det (B) equals, where B = [[4x,2a,-p],[4y, 2b, -q],[4z, 2c, -r]]

In a Delta ABC, a,b,A are given and c_(1), c_(2) are two values of the third side c. The sum of the areas two triangles with sides a,b, c_(1) and a,b,c_(2) is