Home
Class 12
MATHS
Prove that : |[y+k,y,y],[y,y+k,y],[y,y,y...

Prove that : `|[y+k,y,y],[y,y+k,y],[y,y,y+k]|=k^2(3y+k).

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the properties of determinats, show that |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^(2)(3y+k)

Prove that: {:|(x,y,x+y),(y,x+y,x),(x+y,x,y)| = -2(x^3+y^3)

Without expanding, prove the following |(x,x+y,x+2y),(x+2y,x,x+y),(x+y,x+2y,x)|=9y^2(x+y)

Prove that the curves x = y^2 and xy = k cut at right angles if 8k^2 = 1 .

Prove that the curves 4x = y^2 and 4xy = k cut at right angles if k^2 = 512 .

If y = x sin(a+y), prove that dy/dx = (sin^2(a+y))/(sin(a+y)-ycos(a+y))

Prove that the curves x=y^2 and xy=k cut at right angles* if 8k^2 =1

If y^3-y=2x , prove that (d^2y)/(dx^2)=-(24 y)/((3y^2-1)^3) .