Home
Class 12
MATHS
If y = [ x + 3 + sqrt(x^2 + 6x + 10)]^n ...

If `y = [ x + 3 + sqrt(x^2 + 6x + 10)]^n` then prove that `(x^2 + 6x + 10) y_2 + (x + 3) y_1 - n^2y = 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = [ x + 2 + sqrt(x^2 + 4x + 10)]^n then prove that (x^2 + 4x + 10) y_2 + (x + 2) y_1 - n^2y = 0 .

If y = [ x + 5 + sqrt(x^2 + 10x + 1)]^n then prove that (x^2 + 10x + 1) y_2 + (x + 5) y_1 - n^2y = 0 .

y = [x + sqrt(x^2 + 1)]^p , prove that (x^2 + 1)y_2 + xy_1 - p^2y = 0

If y = sin^-1x , prove that (1-x^2)y_2 - x y_1= 0

If y = {x+sqrt (x^2 + a^2})^n , prove that dy/dx= (ny)/sqrt (x^2+a^2) .

If y = 2 cos x -6 sin x , prove that (d^2y)/(dx^2)+y = 0

Find (dy)/(dx) if y = log (x + 3 + sqrt(x^2 + 6x + 3))

If y = sqrt(1+sqrt(1+x^4)) , prove that y(y^2-1)dy/dx = x^3

If x^m y^n = (x+y)^(m+n) , prove that dy/dx = y/x and (d^2y)/(dx^2) = 0