Home
Class 12
MATHS
If y = [ x + 5 + sqrt(x^2 + 10x + 1)]^n ...

If `y = [ x + 5 + sqrt(x^2 + 10x + 1)]^n` then prove that `(x^2 + 10x + 1) y_2 + (x + 5) y_1 - n^2y = 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = [ x + 2 + sqrt(x^2 + 4x + 10)]^n then prove that (x^2 + 4x + 10) y_2 + (x + 2) y_1 - n^2y = 0 .

If y = [ x + 3 + sqrt(x^2 + 6x + 10)]^n then prove that (x^2 + 6x + 10) y_2 + (x + 3) y_1 - n^2y = 0 .

y = [x + sqrt(x^2 + 1)]^p , prove that (x^2 + 1)y_2 + xy_1 - p^2y = 0

If y=[tan^-1 x]^2 , then prove that : (x^2 + 1)^2 y_2+2x(x^2+1) y_1 = 2 .

If y = (sqrt(x+1) - sqrt(x-1)) , then prove that (x^2-1) y_2 +xy_1 = 1/4 y

If y=[sin^-1 x]^2 , then prove that : (1 -x^2) y_2-xy_1 - 2 = 0 .

If y = sqrt((1+x)/(1-x)) , prove that (1-x^2) dy/dx - y = 0