Home
Class 12
MATHS
If y = (log x)^x + x^(log x), then find ...

If `y = (log x)^x + x^(log x)`, then find `dy/dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = a sin (log x) + b cos (log x) , then prove that : x^2 d^2y/dx^2+ x dy/dx+ y = 0 .

if y=(xsinx)/(log_(e)x), then find (dy)/(dx)

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

If y=(log_ex)/(x)+e^(x)sinx+log_(5)x then find (dy)/(dx) .

If x = log t^2 , y = log t^3 , then (dy)/(dx) is

If y= log (tan x) , then dy/dx is:

If x^y + y^x = log a , find dy/dx .

If y=x^(2)+sin^(-1)x+log_(e)x, then find (dy)/(dx)

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If y = log_10 x + log_X 10 + log_(x) X + log_(10)10, find dy/dx