Home
Class 12
MATHS
If y = e^(m tan^-1 x), then show that (1...

If `y = e^(m tan^-1 x)`, then show that `(1 +x^2) y_2 + (2x - m) y_1= 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = e^(2tan^-1x) , then show that : (1 + x^2)^2 d^2y/dx^2 + 2x ( l +x^2 ) dy/dx= 4y .

If y = e^(3tan^-1x) , then show that : (1 + x^2)^2 d^2y/dx^2 + 2x ( l +x^2 ) dy/dx= 9y .

If y = e^(4xtan^-1x) , then show that : (1 + x^2)^2 d^2y/dx^2 + 2x ( l +x^2 ) dy/dx= 16y .

y = e^(m sin^(-1)x), prove that (1 - x^2) y_2 - xy_1 = m^2y

If y = e^(m sin^-1 x) -1lexle1 , show that : (1- x^2)y_2 - x y_1 - m^2y = 0 .

If y=e^(a cos^-1x), -1lexle1 show that: (1 - x^2) y_2 - xy_1-a^2y = 0