Home
Class 12
MATHS
If y = e^(m sin^-1 x) -1lexle1, show tha...

If `y = e^(m sin^-1 x) -1lexle1`, show that : `(1- x^2)y_2 - x y_1 - m^2y = 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(a cos^-1x), -1lexle1 show that: (1 - x^2) y_2 - xy_1-a^2y = 0

If y = e^(acos^-1x), -1lexle1 , show that (1-x^2)(d^2y)/dx^2 - x(dy/dx) - a^2y = 0

If y = e^(m tan^-1 x) , then show that (1 +x^2) y_2 + (2x - m) y_1= 0 .

y = e^(m sin^(-1)x), prove that (1 - x^2) y_2 - xy_1 = m^2y

Find the second order derivative of the following functions If y = (sin^(-1) x)/(sqrt(1 - x^2)) , prove that (1 - x^2) y_2 - 3xy_1 - y = 0

If y=[sin^-1 x]^2 , then prove that : (1 -x^2) y_2-xy_1 - 2 = 0 .

If y= e^(a sin^-1 x) , [-1le x le 1] then show that (1 -x^2) (d^2y) /(dx^2) - xdy/dx -a^2y =0 .

If y = sin^-1x , prove that (1-x^2)y_2 - x y_1= 0