Home
Class 12
MATHS
If alpha=root(3)(1) and alpha is not rea...

If `alpha=root(3)(1)` and `alpha` is not real then `alpha^(3n+1)+alpha^(3n+3)+alpha^(3n+5)` has the value

A

-1

B

0

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \alpha^{3n+1} + \alpha^{3n+3} + \alpha^{3n+5} \) where \( \alpha \) is a non-real cube root of unity. The cube roots of unity are \( 1, \omega, \omega^2 \), where \( \omega = e^{2\pi i / 3} \) and \( \omega^2 = e^{-2\pi i / 3} \). Since \( \alpha \) is not real, we will take \( \alpha = \omega \) or \( \alpha = \omega^2 \). ### Step-by-Step Solution: 1. **Identify the Value of Alpha**: Since \( \alpha \) is a non-real cube root of unity, we can choose \( \alpha = \omega \) (where \( \omega = e^{2\pi i / 3} \)). 2. **Rewrite the Expression**: The expression we want to evaluate is: \[ \alpha^{3n+1} + \alpha^{3n+3} + \alpha^{3n+5} \] Substituting \( \alpha = \omega \): \[ \omega^{3n+1} + \omega^{3n+3} + \omega^{3n+5} \] 3. **Factor Out Common Terms**: We can factor out \( \omega^{3n} \): \[ \omega^{3n} (\omega^1 + \omega^3 + \omega^5) \] 4. **Simplify Using Properties of Cube Roots of Unity**: We know that \( \omega^3 = 1 \). Thus: - \( \omega^3 = 1 \) - \( \omega^4 = \omega \) - \( \omega^5 = \omega^2 \) Therefore, we can rewrite the expression inside the parentheses: \[ \omega^1 + \omega^3 + \omega^5 = \omega + 1 + \omega^2 \] 5. **Use the Sum of Cube Roots of Unity**: We know from the property of cube roots of unity that: \[ 1 + \omega + \omega^2 = 0 \] Therefore: \[ \omega + 1 + \omega^2 = 0 \] 6. **Final Evaluation**: Now substituting back, we have: \[ \omega^{3n} \cdot 0 = 0 \] ### Conclusion: The value of the expression \( \alpha^{3n+1} + \alpha^{3n+3} + \alpha^{3n+5} \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos
  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Continuity, Differentiability and Graph of Function

    A DAS GUPTA|Exercise Exercise|38 Videos

Similar Questions

Explore conceptually related problems

If alpha is a non real root of x^(6)=1 then alpha^(5)+alpha^(3)+alpha+1hline alpha^(2)+1

cos (n + 1) alpha cos (n-1) alpha + sin (n + 1) alpha sin (n-1) alpha =

If alpha satisfies properties a^(3)=1 and alpha^(2)+alpha+1=0 then (4+5 alpha^(334)+3 alpha^(365))/(alpha-alpha^(2))=

If alpha is a non-real root of x^(6)=1 then (alpha^(5)+alpha^(3)+alpha+1)/(alpha^(2)+1)=

If 4n alpha=pi then cot alpha cot2 alpha cot3 alpha...cot(2n-1)alpha n in Z is equal to

If alpha is an n^(th) roots of unity, then 1+2alpha+3alpha^(2)+……..+nalpha^(n-1) equals

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

If alpha is a root of x^(3)-x-1=0, compute the value of alpha^(10)+2 alpha^(8)-alpha^(7)-3 alpha^(6)-3 alpha^(5)+4 alpha^(4)+2 alpha^(3)-4 alpha^(2)-6 alpha

A DAS GUPTA-COMPLEX NUMBERS-EXERCISE
  1. The digit in the units place in the value of (727)^39 is

    Text Solution

    |

  2. If n is an integer, not a multiple of 3, the sum of w^n+w^(2n),w bein...

    Text Solution

    |

  3. If alpha=root(3)(1) and alpha is not real then alpha^(3n+1)+alpha^(3n+...

    Text Solution

    |

  4. If 1,omega,omega^(2) are the cube roots of unity, then the roots of t...

    Text Solution

    |

  5. If z is a complex number then

    Text Solution

    |

  6. If z=ibarz then

    Text Solution

    |

  7. The value of sqrti is

    Text Solution

    |

  8. Prove that (sqrt(3)/(2) +(i)/(2))^(5) + (sqrt(3)/(2) -(i)/(2))^(5) is...

    Text Solution

    |

  9. If zr = sinfrac(2pir)(11)-icosfrac(2rpi)(11) then : the value of sum(r...

    Text Solution

    |

  10. If zr = sinfrac(2pir)(11)-icosfrac(2rpi)(11) then : the value of sum(r...

    Text Solution

    |

  11. The complex numbers sin x - i cos 2x and cos x - i sin 2x are conjugat...

    Text Solution

    |

  12. If |z1|= |z2|=1 and amp z1+ampz2=0 then

    Text Solution

    |

  13. If z1 and z2 are two non zero complex number such that|z1+z2|=|z1|+|z2...

    Text Solution

    |

  14. The inequality |z+2| lt |z-2| represents the region given by

    Text Solution

    |

  15. Let z1 and z2 be complex numbers of such that z1!=z2 and |z1|=|z2|. I...

    Text Solution

    |

  16. If z1=aib and z2=c+id are complex numbes such that |z1|=|z2|=1 and Re(...

    Text Solution

    |

  17. if |z1|= |z2| ne 0 and amp (z1)/(z2)=pi then

    Text Solution

    |

  18. If z1 and z2 are two nonzero complex numbers such that |z1-z2|=|z1|-|z...

    Text Solution

    |

  19. If z1,z2 are nonreal complex and |(z1+z2)/(z1-z2)|=1 then (z1)/(z2) is

    Text Solution

    |

  20. If z=2+3i, then |z^2|^3 is equal to

    Text Solution

    |