Home
Class 12
MATHS
If zr = sinfrac(2pir)(11)-icosfrac(2rpi)...

If `z_r` = `sinfrac(2pir)(11)-icosfrac(2rpi)(11)` then : the value of `sum_(r=0)^10 z_r` is equal to

A

`-1`

B

`0`

C

`-i`

D

`i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( \sum_{r=0}^{10} z_r \) where \( z_r = \sin\left(\frac{2\pi r}{11}\right) - i \cos\left(\frac{2\pi r}{11}\right) \). ### Step-by-step Solution: 1. **Rewrite \( z_r \)**: \[ z_r = \sin\left(\frac{2\pi r}{11}\right) - i \cos\left(\frac{2\pi r}{11}\right) \] We can factor out \(-i\): \[ z_r = -i\left(\cos\left(\frac{2\pi r}{11}\right) - i \sin\left(\frac{2\pi r}{11}\right)\right) \] 2. **Recognize the expression as a complex exponential**: The expression inside the parentheses can be rewritten using Euler's formula: \[ z_r = -i e^{-i\frac{2\pi r}{11}} \] 3. **Sum the values of \( z_r \)**: Now, we need to compute: \[ \sum_{r=0}^{10} z_r = -i \sum_{r=0}^{10} e^{-i\frac{2\pi r}{11}} \] 4. **Identify the sum of roots of unity**: The sum \( \sum_{r=0}^{10} e^{-i\frac{2\pi r}{11}} \) represents the sum of the 11th roots of unity. The roots of unity are given by: \[ e^{i\frac{2\pi k}{n}} \quad \text{for } k = 0, 1, 2, \ldots, n-1 \] In this case, \( n = 11 \). 5. **Use the property of roots of unity**: The sum of all \( n \)th roots of unity is always zero: \[ \sum_{r=0}^{10} e^{i\frac{2\pi r}{11}} = 0 \] 6. **Conclude the sum**: Therefore, we have: \[ \sum_{r=0}^{10} z_r = -i \cdot 0 = 0 \] ### Final Answer: \[ \sum_{r=0}^{10} z_r = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos
  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Continuity, Differentiability and Graph of Function

    A DAS GUPTA|Exercise Exercise|38 Videos

Similar Questions

Explore conceptually related problems

If z_r = sinfrac(2pir)(11)-icosfrac(2rpi)(11) then : the value of sum_(r=1)^10 z_r is equal to

The value of sum_(r=0)^(n)r(n-r)(nC_(r))^(2) is equal to

The value of sum_(r = 16)^(30)(r + 2)(r - 3) is equal to :

The value of sum sum_(r=1)^(10)(2^(r-1)+8r-3) is equal to :

The value of sum_(r=1)^(15) (r2^(r))/((r+2)!) is equal to

the value of 40c_(31)+sum_(r=0)^(10)(C_(10+r)^(40-r)) is equal to

value of sum_(r=0)^(2n)rC(2n,r).((1)/(r+2)) is equal to:

A DAS GUPTA-COMPLEX NUMBERS-EXERCISE
  1. The value of sqrti is

    Text Solution

    |

  2. Prove that (sqrt(3)/(2) +(i)/(2))^(5) + (sqrt(3)/(2) -(i)/(2))^(5) is...

    Text Solution

    |

  3. If zr = sinfrac(2pir)(11)-icosfrac(2rpi)(11) then : the value of sum(r...

    Text Solution

    |

  4. If zr = sinfrac(2pir)(11)-icosfrac(2rpi)(11) then : the value of sum(r...

    Text Solution

    |

  5. The complex numbers sin x - i cos 2x and cos x - i sin 2x are conjugat...

    Text Solution

    |

  6. If |z1|= |z2|=1 and amp z1+ampz2=0 then

    Text Solution

    |

  7. If z1 and z2 are two non zero complex number such that|z1+z2|=|z1|+|z2...

    Text Solution

    |

  8. The inequality |z+2| lt |z-2| represents the region given by

    Text Solution

    |

  9. Let z1 and z2 be complex numbers of such that z1!=z2 and |z1|=|z2|. I...

    Text Solution

    |

  10. If z1=aib and z2=c+id are complex numbes such that |z1|=|z2|=1 and Re(...

    Text Solution

    |

  11. if |z1|= |z2| ne 0 and amp (z1)/(z2)=pi then

    Text Solution

    |

  12. If z1 and z2 are two nonzero complex numbers such that |z1-z2|=|z1|-|z...

    Text Solution

    |

  13. If z1,z2 are nonreal complex and |(z1+z2)/(z1-z2)|=1 then (z1)/(z2) is

    Text Solution

    |

  14. If z=2+3i, then |z^2|^3 is equal to

    Text Solution

    |

  15. The equation z^5+z^4+z^3+z^2+z+1=0 is satisfied by

    Text Solution

    |

  16. The points, z1,z2,z3,z4, in the complex plane are the vartices of a pa...

    Text Solution

    |

  17. If z^4= (z-1)^4 then the roots are represented in the Argand plane by...

    Text Solution

    |

  18. If |z1 |=|z2|=|z3| = 1 and z1 +z2+z3 =0 then the area of the triangle ...

    Text Solution

    |

  19. In the Argand plane |(z-i)/(z+i)| = 4 represents a

    Text Solution

    |

  20. Suppose z1 + z2 + z3 + z4=0 and |z1| = |z2| = |z3| = |z4|=1. If z1, z2...

    Text Solution

    |