Home
Class 12
MATHS
If zr = sinfrac(2pir)(11)-icosfrac(2rpi)...

If `z_r` = `sinfrac(2pir)(11)-icosfrac(2rpi)(11)` then : the value of `sum_(r=1)^10 z_r` is equal to

A

`-1`

B

0

C

`-i`

D

`i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the value of the sum \( \sum_{r=1}^{10} z_r \) where \( z_r = \sin\left(\frac{2\pi r}{11}\right) - i \cos\left(\frac{2\pi r}{11}\right) \). ### Step-by-Step Solution: 1. **Rewrite \( z_r \)**: \[ z_r = \sin\left(\frac{2\pi r}{11}\right) - i \cos\left(\frac{2\pi r}{11}\right) \] We can factor out \(-i\): \[ z_r = -i\left(\cos\left(\frac{2\pi r}{11}\right) + i \sin\left(\frac{2\pi r}{11}\right)\right) \] 2. **Recognize the expression**: The expression inside the parentheses is the exponential form of complex numbers: \[ z_r = -i e^{i\frac{2\pi r}{11}} \] 3. **Calculate the sum**: Now we need to calculate: \[ \sum_{r=1}^{10} z_r = -i \sum_{r=1}^{10} e^{i\frac{2\pi r}{11}} \] The sum \( \sum_{r=0}^{10} e^{i\frac{2\pi r}{11}} \) represents the sum of the 11th roots of unity, which is known to be zero: \[ \sum_{r=0}^{10} e^{i\frac{2\pi r}{11}} = 0 \] 4. **Separate the missing term**: Since we are summing from \( r=1 \) to \( r=10 \), we can express the sum as: \[ \sum_{r=1}^{10} e^{i\frac{2\pi r}{11}} = -e^{i\frac{2\pi \cdot 0}{11}} = -1 \] 5. **Final calculation**: Therefore, substituting back into our sum: \[ \sum_{r=1}^{10} z_r = -i(-1) = i \] ### Conclusion: The value of \( \sum_{r=1}^{10} z_r \) is \( i \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos
  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Continuity, Differentiability and Graph of Function

    A DAS GUPTA|Exercise Exercise|38 Videos

Similar Questions

Explore conceptually related problems

If z_r = sinfrac(2pir)(11)-icosfrac(2rpi)(11) then : the value of sum_(r=0)^10 z_r is equal to

The value of sum_(r=1)^(10)r.r! is

The value of sum_(r = 16)^(30)(r + 2)(r - 3) is equal to :

The value of sum sum_(r=1)^(10)(2^(r-1)+8r-3) is equal to :

The value of sum_(r=1)^(15) (r2^(r))/((r+2)!) is equal to

The sum sum_(r=1)^(10)(r^(2)+1)xx(r!) is equal to

The sum sum_(r=2)^(oo)(1)/(r^(2)-1) is equal to

A DAS GUPTA-COMPLEX NUMBERS-EXERCISE
  1. Prove that (sqrt(3)/(2) +(i)/(2))^(5) + (sqrt(3)/(2) -(i)/(2))^(5) is...

    Text Solution

    |

  2. If zr = sinfrac(2pir)(11)-icosfrac(2rpi)(11) then : the value of sum(r...

    Text Solution

    |

  3. If zr = sinfrac(2pir)(11)-icosfrac(2rpi)(11) then : the value of sum(r...

    Text Solution

    |

  4. The complex numbers sin x - i cos 2x and cos x - i sin 2x are conjugat...

    Text Solution

    |

  5. If |z1|= |z2|=1 and amp z1+ampz2=0 then

    Text Solution

    |

  6. If z1 and z2 are two non zero complex number such that|z1+z2|=|z1|+|z2...

    Text Solution

    |

  7. The inequality |z+2| lt |z-2| represents the region given by

    Text Solution

    |

  8. Let z1 and z2 be complex numbers of such that z1!=z2 and |z1|=|z2|. I...

    Text Solution

    |

  9. If z1=aib and z2=c+id are complex numbes such that |z1|=|z2|=1 and Re(...

    Text Solution

    |

  10. if |z1|= |z2| ne 0 and amp (z1)/(z2)=pi then

    Text Solution

    |

  11. If z1 and z2 are two nonzero complex numbers such that |z1-z2|=|z1|-|z...

    Text Solution

    |

  12. If z1,z2 are nonreal complex and |(z1+z2)/(z1-z2)|=1 then (z1)/(z2) is

    Text Solution

    |

  13. If z=2+3i, then |z^2|^3 is equal to

    Text Solution

    |

  14. The equation z^5+z^4+z^3+z^2+z+1=0 is satisfied by

    Text Solution

    |

  15. The points, z1,z2,z3,z4, in the complex plane are the vartices of a pa...

    Text Solution

    |

  16. If z^4= (z-1)^4 then the roots are represented in the Argand plane by...

    Text Solution

    |

  17. If |z1 |=|z2|=|z3| = 1 and z1 +z2+z3 =0 then the area of the triangle ...

    Text Solution

    |

  18. In the Argand plane |(z-i)/(z+i)| = 4 represents a

    Text Solution

    |

  19. Suppose z1 + z2 + z3 + z4=0 and |z1| = |z2| = |z3| = |z4|=1. If z1, z2...

    Text Solution

    |

  20. If arg (z-z1)/(z2-z1) = 0 for three distinct complex numbers z,z1,z2 ...

    Text Solution

    |