Home
Class 12
MATHS
if |z1|= |z2| ne 0 and amp (z1)/(z2)=pi ...

if `|z_1|`= `|z_2|` `ne` 0 and amp `(z_1)/(z_2)`=`pi` then

A

`z_1=z_2`

B

`z_1+z_2`=0

C

`z_1z_2`=1

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos
  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Continuity, Differentiability and Graph of Function

    A DAS GUPTA|Exercise Exercise|38 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If |z_1| = |z_2| =1 and amp z_1 +amp z_2 =0 then

If |z_1|=|z_2| and arg(z_1)+arg(z_2)=pi/2 then (A) z_1z_2 is purely real (B) z_1z_2 is purely imaginary (C) (z_1+z_2)^2 is purely imaginary (D) arg(z_1^(-1))+arg(z_2^(-1))=-pi/2

If |z_1| = |z_2| and "arg" (z_1) + "arg" (z_2) = pi//2, , then

|z_(1)|=|z_(2)| and arg((z_(1))/(z_(2)))=pi, then z_(1)+z_(2) is equal to

If |z_(1)|=|z_(2)|andamp(z_(1))+amp(z_(2))=0, then

If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =

If |z_(1)|=|z_(2)| and argz_(1)sim argz_(2)=pi, show that z_(1)+z_(2)=0

Let z1 and z2 be two complex numbers such that |z1|=|z2| and arg(z1)+arg(z2)=pi then which of the following is correct?

A DAS GUPTA-COMPLEX NUMBERS-EXERCISE
  1. Let z1 and z2 be complex numbers of such that z1!=z2 and |z1|=|z2|. I...

    Text Solution

    |

  2. If z1=aib and z2=c+id are complex numbes such that |z1|=|z2|=1 and Re(...

    Text Solution

    |

  3. if |z1|= |z2| ne 0 and amp (z1)/(z2)=pi then

    Text Solution

    |

  4. If z1 and z2 are two nonzero complex numbers such that |z1-z2|=|z1|-|z...

    Text Solution

    |

  5. If z1,z2 are nonreal complex and |(z1+z2)/(z1-z2)|=1 then (z1)/(z2) is

    Text Solution

    |

  6. If z=2+3i, then |z^2|^3 is equal to

    Text Solution

    |

  7. The equation z^5+z^4+z^3+z^2+z+1=0 is satisfied by

    Text Solution

    |

  8. The points, z1,z2,z3,z4, in the complex plane are the vartices of a pa...

    Text Solution

    |

  9. If z^4= (z-1)^4 then the roots are represented in the Argand plane by...

    Text Solution

    |

  10. If |z1 |=|z2|=|z3| = 1 and z1 +z2+z3 =0 then the area of the triangle ...

    Text Solution

    |

  11. In the Argand plane |(z-i)/(z+i)| = 4 represents a

    Text Solution

    |

  12. Suppose z1 + z2 + z3 + z4=0 and |z1| = |z2| = |z3| = |z4|=1. If z1, z2...

    Text Solution

    |

  13. If arg (z-z1)/(z2-z1) = 0 for three distinct complex numbers z,z1,z2 ...

    Text Solution

    |

  14. The complex numbers z=x+iy which satisfy the equation |(z-5i)/(z+5i)|=...

    Text Solution

    |

  15. The locus of the points z satisfying the condition arg ((z-1)/(z+1))=p...

    Text Solution

    |

  16. If a r g((z-2)/(z+2))=pi/4 then the locus of z is

    Text Solution

    |

  17. zbarz+abarz+baraz+b=0 where binR represents a real circle of nonzero r...

    Text Solution

    |

  18. Find the value of sqrt(20+48i)

    Text Solution

    |

  19. If i^p=i^q where i^2=-1 then p-q is divisible by 4.

    Text Solution

    |

  20. If z=(2+3i)/(3+2i), then |z|=

    Text Solution

    |