Home
Class 12
MATHS
In the Argand plane |(z-i)/(z+i)| = 4 r...

In the Argand plane `|(z-i)/(z+i)|` = 4 represents a

A

pair of distinct lines

B

circle

C

a pair of coincident

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \left| \frac{z - i}{z + i} \right| = 4 \) in the Argand plane, we will proceed step by step. ### Step 1: Rewrite the expression in terms of \( z \) Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then we can rewrite the expression: \[ \left| \frac{(x + iy) - i}{(x + iy) + i} \right| = \left| \frac{x + (y - 1)i}{x + (y + 1)i} \right| \] ### Step 2: Use the property of moduli Using the property of moduli, we know that: \[ \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \] Thus, we have: \[ \frac{|x + (y - 1)i|}{|x + (y + 1)i|} = 4 \] ### Step 3: Calculate the moduli Now, we calculate the moduli: \[ |x + (y - 1)i| = \sqrt{x^2 + (y - 1)^2} \] \[ |x + (y + 1)i| = \sqrt{x^2 + (y + 1)^2} \] So, we can rewrite the equation as: \[ \frac{\sqrt{x^2 + (y - 1)^2}}{\sqrt{x^2 + (y + 1)^2}} = 4 \] ### Step 4: Square both sides Squaring both sides gives: \[ \frac{x^2 + (y - 1)^2}{x^2 + (y + 1)^2} = 16 \] ### Step 5: Cross-multiply Cross-multiplying leads to: \[ x^2 + (y - 1)^2 = 16(x^2 + (y + 1)^2) \] ### Step 6: Expand both sides Expanding both sides: \[ x^2 + (y^2 - 2y + 1) = 16(x^2 + (y^2 + 2y + 1)) \] This simplifies to: \[ x^2 + y^2 - 2y + 1 = 16x^2 + 16y^2 + 32y + 16 \] ### Step 7: Rearranging the equation Rearranging gives: \[ x^2 - 16x^2 + y^2 - 16y^2 - 2y - 32y + 1 - 16 = 0 \] \[ -15x^2 - 15y^2 - 34y - 15 = 0 \] ### Step 8: Divide by -15 Dividing the entire equation by -15 results in: \[ x^2 + y^2 + \frac{34}{15}y + 1 = 0 \] ### Step 9: Completing the square To complete the square for \( y \): \[ x^2 + \left(y + \frac{17}{15}\right)^2 - \left(\frac{17}{15}\right)^2 + 1 = 0 \] This leads to: \[ x^2 + \left(y + \frac{17}{15}\right)^2 = \left(\frac{17}{15}\right)^2 - 1 \] ### Step 10: Final form This represents a circle in the form: \[ (x - h)^2 + (y - k)^2 = r^2 \] where \( h = 0 \), \( k = -\frac{17}{15} \), and \( r^2 = \left(\frac{17}{15}\right)^2 - 1 \). ### Conclusion Thus, the equation \( \left| \frac{z - i}{z + i} \right| = 4 \) represents a circle in the Argand plane. ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos
  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Continuity, Differentiability and Graph of Function

    A DAS GUPTA|Exercise Exercise|38 Videos

Similar Questions

Explore conceptually related problems

the points in the argand plane 9+i,4+13i,-8+8i-3-4i represents

Let 3-i and 2+i be affixes of two points A and B in the Argand plane and P represents the complex number z=x+iy . Then, the locus of the P if |z-3+i|=|z-2-i| , is

Let the locus of any point P(z) in the argand plane is arg((z-5i)/(z+5i))=(pi)/(4) . If O is the origin, then the value of (max.(OP)+min.(OP))/(2) is

If log_(sqrt(3))((|z|^(2)-|z|+1)/(2+|z|))>2, then locate the region in the Argand plane which represents z

The equation |z - i| = |z - 1| represents :

Read the following writeup carefully: In argand plane |z| represent the distance of a point z from the origin. In general |z_1-z_2| represent the distance between two points z_1 and z_2 . Also for a general moving point z in argand plane, if arg(z) =theta , then z=|z|e^(itheta) , where e^(itheta) = cos theta + i sintheta . Now answer the following question If |z-(3+2i)|=|z cos ((pi)/(4) - "arg" z)|, then locus of z is

If |z-1|=1, where is a point on the argand plane, show that (z-2)/(z)=i tan (argz),where i=sqrt(-1).

A DAS GUPTA-COMPLEX NUMBERS-EXERCISE
  1. If z^4= (z-1)^4 then the roots are represented in the Argand plane by...

    Text Solution

    |

  2. If |z1 |=|z2|=|z3| = 1 and z1 +z2+z3 =0 then the area of the triangle ...

    Text Solution

    |

  3. In the Argand plane |(z-i)/(z+i)| = 4 represents a

    Text Solution

    |

  4. Suppose z1 + z2 + z3 + z4=0 and |z1| = |z2| = |z3| = |z4|=1. If z1, z2...

    Text Solution

    |

  5. If arg (z-z1)/(z2-z1) = 0 for three distinct complex numbers z,z1,z2 ...

    Text Solution

    |

  6. The complex numbers z=x+iy which satisfy the equation |(z-5i)/(z+5i)|=...

    Text Solution

    |

  7. The locus of the points z satisfying the condition arg ((z-1)/(z+1))=p...

    Text Solution

    |

  8. If a r g((z-2)/(z+2))=pi/4 then the locus of z is

    Text Solution

    |

  9. zbarz+abarz+baraz+b=0 where binR represents a real circle of nonzero r...

    Text Solution

    |

  10. Find the value of sqrt(20+48i)

    Text Solution

    |

  11. If i^p=i^q where i^2=-1 then p-q is divisible by 4.

    Text Solution

    |

  12. If z=(2+3i)/(3+2i), then |z|=

    Text Solution

    |

  13. Find the solutions to the equation (z+i)^2 = 16.

    Text Solution

    |

  14. If z is a nonreal compex number and |z|=1 then z^2+1/z^2=2 .

    Text Solution

    |

  15. State true or false: If z= (cos2theta+isin2theta)/(costheta+isintheta)...

    Text Solution

    |

  16. If two nonzero complex numbers z1,z2 be such that z1+z2 is real then t...

    Text Solution

    |

  17. For complex numbersz1=x1+iy1" and " z2=x2+iy2 we write z1 cap z2 if x1...

    Text Solution

    |

  18. If z is a nonzero complex number then (bar(z^-1))=(barz)^-1 .

    Text Solution

    |

  19. If the points P and Q represent the complex numbers z and iz then angl...

    Text Solution

    |

  20. If z1ne-z2 and |z1+z2|=|1/z1 + 1/z2| then :

    Text Solution

    |