Home
Class 12
MATHS
zbarz+abarz+baraz+b=0 where binR represe...

`zbarz+abarz+baraz+b`=0 where `binR` represents a real circle of nonzero radius if

A

`|bar a|^2gt b`

B

`|a|^2ltb`

C

`|bara|^2geb`

D

`|a|^2leb`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \overline{z}z + \overline{a}z + a\overline{z} + b = 0 \), where \( z \) is a complex number and represents a circle of non-zero radius, we can follow these steps: ### Step 1: Substitute \( z \) and \( a \) Assume \( z = x + iy \) and \( a = \alpha + i\beta \), where \( x \) and \( y \) are real numbers, and \( \alpha \) and \( \beta \) are real parts of \( a \). ### Step 2: Calculate \( \overline{z} \) and \( \overline{a} \) The conjugate of \( z \) is \( \overline{z} = x - iy \) and the conjugate of \( a \) is \( \overline{a} = \alpha - i\beta \). ### Step 3: Substitute into the equation Substituting these values into the equation gives: \[ (x - iy)(x + iy) + (\alpha - i\beta)(x + iy) + (\alpha + i\beta)(x - iy) + b = 0 \] ### Step 4: Simplify \( \overline{z}z \) Using the property \( \overline{z}z = |z|^2 = x^2 + y^2 \): \[ x^2 + y^2 + (\alpha - i\beta)(x + iy) + (\alpha + i\beta)(x - iy) + b = 0 \] ### Step 5: Expand the terms Expanding the terms: 1. \( (\alpha - i\beta)(x + iy) = \alpha x + i\alpha y - i\beta x - \beta y \) 2. \( (\alpha + i\beta)(x - iy) = \alpha x - i\alpha y + i\beta x - \beta y \) Combining these gives: \[ x^2 + y^2 + 2\alpha x + 2\beta y + b = 0 \] ### Step 6: Rearranging the equation Rearranging the equation, we have: \[ x^2 + 2\alpha x + y^2 + 2\beta y + b = 0 \] ### Step 7: Completing the square To write this in standard form, complete the square: 1. For \( x \): \( x^2 + 2\alpha x = (x + \alpha)^2 - \alpha^2 \) 2. For \( y \): \( y^2 + 2\beta y = (y + \beta)^2 - \beta^2 \) Thus, we have: \[ (x + \alpha)^2 - \alpha^2 + (y + \beta)^2 - \beta^2 + b = 0 \] This simplifies to: \[ (x + \alpha)^2 + (y + \beta)^2 = \alpha^2 + \beta^2 - b \] ### Step 8: Condition for a circle of non-zero radius For this to represent a circle, the right side must be positive: \[ \alpha^2 + \beta^2 - b > 0 \] This implies: \[ \alpha^2 + \beta^2 > b \] ### Final Result Thus, the condition for the equation to represent a circle of non-zero radius is: \[ |\overline{a}|^2 > b \] where \( |\overline{a}|^2 = \alpha^2 + \beta^2 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos
  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Continuity, Differentiability and Graph of Function

    A DAS GUPTA|Exercise Exercise|38 Videos

Similar Questions

Explore conceptually related problems

If z = x + iy , then show that 2 bar(z) + 2 (a + barz) + b = 0 , where b in R , represents a circles.

If z=x+iy, then show that zbar(z)+2(z+bar(z))+a=0, where a in R represents a circle.

The equation zbar(z)+abar(z)+bar(a)z+b=0,b in R represents circle,if

If z=x+iy, then show that zbar(z)+2(z+bar(z))+a=0, where a in R represent a circle.

If x^(2)+y^(2)-2x+2ay+a+3=0 represents the real circle with nonzero radius,then find the values of a.

The equation x^(2) + y^(2) + 2gx + 2fy + c = 0 represents a circle of non-zero radius , if

A DAS GUPTA-COMPLEX NUMBERS-EXERCISE
  1. The locus of the points z satisfying the condition arg ((z-1)/(z+1))=p...

    Text Solution

    |

  2. If a r g((z-2)/(z+2))=pi/4 then the locus of z is

    Text Solution

    |

  3. zbarz+abarz+baraz+b=0 where binR represents a real circle of nonzero r...

    Text Solution

    |

  4. Find the value of sqrt(20+48i)

    Text Solution

    |

  5. If i^p=i^q where i^2=-1 then p-q is divisible by 4.

    Text Solution

    |

  6. If z=(2+3i)/(3+2i), then |z|=

    Text Solution

    |

  7. Find the solutions to the equation (z+i)^2 = 16.

    Text Solution

    |

  8. If z is a nonreal compex number and |z|=1 then z^2+1/z^2=2 .

    Text Solution

    |

  9. State true or false: If z= (cos2theta+isin2theta)/(costheta+isintheta)...

    Text Solution

    |

  10. If two nonzero complex numbers z1,z2 be such that z1+z2 is real then t...

    Text Solution

    |

  11. For complex numbersz1=x1+iy1" and " z2=x2+iy2 we write z1 cap z2 if x1...

    Text Solution

    |

  12. If z is a nonzero complex number then (bar(z^-1))=(barz)^-1 .

    Text Solution

    |

  13. If the points P and Q represent the complex numbers z and iz then angl...

    Text Solution

    |

  14. If z1ne-z2 and |z1+z2|=|1/z1 + 1/z2| then :

    Text Solution

    |

  15. Find z, if |(z+1)/(z+i)|=1

    Text Solution

    |

  16. If in the Argand plane z1,z2,z3 and z4 are four points such that |z1|=...

    Text Solution

    |

  17. State true or false: If zne0 then argz+argbarz=0.

    Text Solution

    |

  18. Let z1 and z2 be the roots of z^2+pz+q=0. Then the points represented ...

    Text Solution

    |

  19. If z1,z2 are nonzero complex numbers then |(z1)/(|z1|)+(z2)/(|z2|)|le2...

    Text Solution

    |

  20. The nth roots of -1 can be n terms of a GP.

    Text Solution

    |