Home
Class 12
MATHS
Let f (x ) and g(x) be increasing and de...

Let f (x ) and g(x) be increasing and decreasing functions respectively from `[0,oo) "to" [ 0 , oo)` Let h (x) = fog (x) If h(0) =0 then h(x) is

Promotional Banner

Topper's Solved these Questions

  • Function

    A DAS GUPTA|Exercise Exercise|57 Videos
  • Equations, Inequation and Expressions

    A DAS GUPTA|Exercise Exercise|301 Videos
  • Heights and Distances

    A DAS GUPTA|Exercise Exercise|3 Videos

Similar Questions

Explore conceptually related problems

Let f and g be increasing and decreasing functions,respectively,from [0,oo]to[0,oo] Let h(x)=f(g(x)). If h(0)=0, then h(x)-h(1) is always zero (b) always negative always positive (d) strictly increasing none of these

Let f:[0,oo)rarr[0,oo) and g:[0,oo)rarr[0,oo) be non-increasing and non-decreasing functions,respectively,and h(x)=g(f(x)) If f and g are differentiable functions,h(x)=g(f(x)). If f and g are differentiable for all points in their respective domains and h(0)=0, then show h(x) is always, identically zero.

Show that f(x)=(1)/(x) is a decreasing function on (0,oo)

Show that f(x)=(1)/(x) is decreasing function on (0,oo)

Let domain and range of f(x) and g(x) are respectively (0,oo). If f(x) be an increasing function g(x) be an decreasing function.Also,h(x)=f(g(x)),h(0)=0 and p(x)=h(x^(2)-2x^(2)+2x)-epsilon(4) then for every x in(0,2]

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

The function f : [0,oo)to[0,oo) defined by f(x)=(2x)/(1+2x) is

Let f:[0, infty) to [0, infty) and g: [0, infty) to [0, infty) be two functions such that f is non-increasing and g is non-decreasing. Let h(x) = g(f(x)) AA x in [0, infty) . If h(0) =0 , then h(2020) is equal to

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

A DAS GUPTA-Function-Exercise
  1. Period of |sinx+cosx| is

    Text Solution

    |

  2. If f(x) in [1,2] where x in R and for a fixed positive real number p, ...

    Text Solution

    |

  3. Let f (x ) and g(x) be increasing and decreasing functions respectivel...

    Text Solution

    |

  4. Computer the inverse of the function : f(x) = (x + sqrt(x^(2) + 1))

    Text Solution

    |

  5. If f(x)=1-x/(1+x), x not equal to -1 then f{f(1/x)}=

    Text Solution

    |

  6. If f(x)=cos(logx), then f(x)f(y)-1/2[f(x/y)+f(xy)]=

    Text Solution

    |

  7. If f(x)=(x+1)/x and phi(x)=(x^4+1)/(x^4) then phi(a)=-- where f(a)=5.

    Text Solution

    |

  8. If f(x) is a polynomial function of the second degree such tha f(0)=5,...

    Text Solution

    |

  9. If f(x+1)=x^(2)-3x+2 then f(x) is equal to

    Text Solution

    |

  10. If f is an even function defined on the interval (-5,5), then four rea...

    Text Solution

    |

  11. If f(x) is a periodic function of the period k then f(ax+b) is a perio...

    Text Solution

    |

  12. The value of f(x)=3sin((pi^2)/(16)-x^2) lie in the interval

    Text Solution

    |

  13. If f:RrarrR be a function given f(x)=sqrt1- sqrt(1-x^2) then the domai...

    Text Solution

    |

  14. If the function f : [2,+prop)rarrX be bijective wheras f(x)= 5-4x+x^2 ...

    Text Solution

    |

  15. Find the domain f(x)=log(100x)((2 log(10) x+1)/-x)

    Text Solution

    |

  16. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4=1, then (gof)(x...

    Text Solution

    |

  17. If f(x)=(x+2)/(x-1)=y then

    Text Solution

    |

  18. If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x, where [x] stands for the greatest ...

    Text Solution

    |

  19. Let f(x) = log(x + sqrt(x^2 +1)) , then f'(x) equals.

    Text Solution

    |

  20. If f(x)=log((1+x)/(1-x)), "then f "((2x)/(1+x^(2))) is equal to

    Text Solution

    |