Home
Class 12
MATHS
If fr(x),gr(x),hr(x),r=1,2,3 are polynom...

If `f_r(x),g_r(x),h_r(x),r=1,2,3` are polynomials such that `f_r(a)=g_r(a)=h ,(a),r=1,2,3a n d` `F(x)=|f_1(x)f_2(x)f_3(x)g_1(x)g_2(x)g_3(x)h_1(x)h_2(x)h_3(x)|` then `F^(prime)(x)a tx=a` is____________________

Promotional Banner

Topper's Solved these Questions

  • Differentiation

    A DAS GUPTA|Exercise Exercise|98 Videos
  • Differential Equation of the First Order

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Elementary Probability

    A DAS GUPTA|Exercise Exercise|137 Videos

Similar Questions

Explore conceptually related problems

If f_r(x),g_r(x),h_r(x),r=1,2,3 are polynomials such that f_r(a)=g_r(a)=h_r(a),r=1,2,3a n d F(x)=|[f_1(x),f_2(x),f_3(x)],[g_1(x),g_2(x),g_3(x)],[h_1(x),h_2(x),h_3(x)]| then F^(prime)(x)a tx=a is____________________

If f_(n)(x),g_(n)(x),h_(n)(x),n=1, 2, 3 are polynomials in x such that f_(n)(a)=g_(n)(a)=h_(n)(a),n=1,2,3 and F(x)=|{:(f_(1)(x),f_(2)(x),f_(3)(x)),(g_(1)(x),g_(2)(x),g_(3)(x)),(h_(1)(x),h_(2)(x),h_(3)(x)):}| . Then, F' (a) is equal to

If f_(r)(x), g_(r)(x), h_(r) (x), r=1, 2, 3 are polynomials in x such that f_(r)(a) = g_(r)(a) = h_(r) (a), r=1, 2, 3 and " "F(x) =|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}| then F'(x) at x = a is ..... .

If f_r(x),g_r(x),h_r(x),r=1,2,3 are differentiable function and y=|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))| then dy/dx= |(f\'_1(x), g\'_1(x), h\'_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))|+ |(f_1(x), g_1(x), h_1(x)), (f\'_2(x), g\'_2(x), h\'_2(x)),(f_3(x), g_3(x), h_3(x))|+|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f\'_3(x), g\'_3(x), h\'_3(x))| On the basis of above information, answer the following question: Let f(x)=|(x^4, cosx, sinx),(24, 0, 1),(a, a^2, a^3)| , where a is a constant Then at x= pi/2, d^4/dx^4{f(x)} is (A) 0 (B) a (C) a+a^3 (D) a+a^4

If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(x^(3))+x^(2)g(x^(6)) is divisible by x^(2)+x+1, then ( a )f(1)=g(1) (b) f(1)=1g(1)( ) h(1)=0 (d) all of these

f(x)=x^(2)-2x,x in R, and g(x)=f(f(x)-1)+f(5-f(x)) Show that g(x)>=0AA x in R

If f(x), g(x) and h(x) are second degree polynomials. Prove that sum_(r=1)^n Delta_r is independent of x where Delta_r=|[2r+1, 6n(n+2),f(x) ],[2^(r-1), 3*2^(n+1)-6, g(x)],[ r(n-r+1), n(n+1)(n+2),h(x)]|

If :R rarr R^(+) be a differentiable function and g(x)=e^(2x)(2f(x)-3(f(x))^(2)+2(f(x))^(3))f or x in R ,then

If f,g,a n dh are differentiable functions of xa n d(x)=|fgh(xf)'(xg)'(x h)'(x^(f2)f)' '(x^2g)' '(x^2h)' '| prove that ^(prime)=|fgff'g' h '(x^3f' ')'(x^3g' ')'(x^3h ' ')'|

f:R rarr R,f(x)=x^(3)+3x+2 and g:R rarr R such that f(g(x))=x. Then value of int_(2)^(6)g(x)dx is

A DAS GUPTA-Differentiation-Exercise
  1. If x^(2)+y^(2)=t andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then prove that (dy...

    Text Solution

    |

  2. Prove that d/(dx)|(u1,v1,w1),(u2,v2,w2),(u3,v3,w3)|=|(u1,v1,w1),(u2,v2...

    Text Solution

    |

  3. If fr(x),gr(x),hr(x),r=1,2,3 are polynomials such that fr(a)=gr(a)=h ,...

    Text Solution

    |

  4. If y = cos ax, prove that |(y,y1,y2),(y3,y4,y5),(y6,y7,y8)|=0 where yr...

    Text Solution

    |

  5. Let Delta(x)=|(x^2-1,x+1,x-2),(2x^2-1,3x,3x-3),(x^2+4,2x-1,2x-1)|. Pro...

    Text Solution

    |

  6. If y=sin(2sin^-1x)show that (1-x^2)(d^2y)/(dx^2)= xdy/dx-4y

    Text Solution

    |

  7. If y=a cos (logx)+b sin (logx), prove that x^(2)y(2)+xy(1)+y=0.

    Text Solution

    |

  8. If y=x^(n-1) log x, prove that (x^2y2)+(3-2n)xy1+(n-1)^2.y=0 where y1...

    Text Solution

    |

  9. Let y=tan^-1sqrt(x^2-1). Prove that (2x^2-1)((dy)/(dx))+x(x^2-1)((d^2...

    Text Solution

    |

  10. If y=(a x+b)/(x^2+c), prove that (2x y1+y)y3=3(x y2+y1)y2.

    Text Solution

    |

  11. Let y=f(x).phi(x) and z=f'(x).phi'(x). prove that 1/y*(d^2y)/(dx^2)=1/...

    Text Solution

    |

  12. Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)...

    Text Solution

    |

  13. Let f'(x) exists for all x != 0 and f(xy) = f(x) + f(y) for all real x...

    Text Solution

    |

  14. A function f is defined such that for all real x, y (a) f(x+y)=f(x).f(...

    Text Solution

    |

  15. A function f is defined such that for all real x, y (a) f(x+y)=f(x).f(...

    Text Solution

    |

  16. Let f(x+y)=f(x)+f(y) for all real x,y and f'(0) exists. Prove that f'(...

    Text Solution

    |

  17. Let f((x+y)/(2))=1/2 |f(x) +f(y)|for all real x and y, if f '(0) exist...

    Text Solution

    |

  18. A function f(x) is so defined that for all real x,{f(x)}^n = f(nx). Pr...

    Text Solution

    |

  19. Prove that the derivative of (a) an odd function is an even function;

    Text Solution

    |

  20. Prove that the derivative of a periodic function of period T is a peri...

    Text Solution

    |