Home
Class 12
MATHS
If y=x^(n-1) log x, prove that (x^2y2)+...

If ` y=x^(n-1) log x`, prove that `(x^2y_2)+(3-2n)xy_1+(n-1)^2`.y=0 where` y_1=dy/dx and y_2=(d^2)/(dx^2)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • Differentiation

    A DAS GUPTA|Exercise Exercise|98 Videos
  • Differential Equation of the First Order

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Elementary Probability

    A DAS GUPTA|Exercise Exercise|137 Videos

Similar Questions

Explore conceptually related problems

If x=sin theta,y=cos p theta ,prove that (1-x^(2))y_(2)-xy_(1)+p^(2)y=0, where y_(2)=(d^(2)y)/(dx^(2)) and y_(1)=(dy)/(dx)

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

If y=x^(n-1)ln x then x^(2)y_(2)+(3-2n)xy_(1) is equal to -(n-1)^(2)y(b)(n-1)^(2)y-n^(2)y(d)n^(2)y

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

A DAS GUPTA-Differentiation-Exercise
  1. If y=sin(2sin^-1x)show that (1-x^2)(d^2y)/(dx^2)= xdy/dx-4y

    Text Solution

    |

  2. If y=a cos (logx)+b sin (logx), prove that x^(2)y(2)+xy(1)+y=0.

    Text Solution

    |

  3. If y=x^(n-1) log x, prove that (x^2y2)+(3-2n)xy1+(n-1)^2.y=0 where y1...

    Text Solution

    |

  4. Let y=tan^-1sqrt(x^2-1). Prove that (2x^2-1)((dy)/(dx))+x(x^2-1)((d^2...

    Text Solution

    |

  5. If y=(a x+b)/(x^2+c), prove that (2x y1+y)y3=3(x y2+y1)y2.

    Text Solution

    |

  6. Let y=f(x).phi(x) and z=f'(x).phi'(x). prove that 1/y*(d^2y)/(dx^2)=1/...

    Text Solution

    |

  7. Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)...

    Text Solution

    |

  8. Let f'(x) exists for all x != 0 and f(xy) = f(x) + f(y) for all real x...

    Text Solution

    |

  9. A function f is defined such that for all real x, y (a) f(x+y)=f(x).f(...

    Text Solution

    |

  10. A function f is defined such that for all real x, y (a) f(x+y)=f(x).f(...

    Text Solution

    |

  11. Let f(x+y)=f(x)+f(y) for all real x,y and f'(0) exists. Prove that f'(...

    Text Solution

    |

  12. Let f((x+y)/(2))=1/2 |f(x) +f(y)|for all real x and y, if f '(0) exist...

    Text Solution

    |

  13. A function f(x) is so defined that for all real x,{f(x)}^n = f(nx). Pr...

    Text Solution

    |

  14. Prove that the derivative of (a) an odd function is an even function;

    Text Solution

    |

  15. Prove that the derivative of a periodic function of period T is a peri...

    Text Solution

    |

  16. Let f(x) be a function satisfying the condition f(-x) = f(x) for all r...

    Text Solution

    |

  17. A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)...

    Text Solution

    |

  18. Find the sum of series sum(r=1)^nr.x^(r-1), using calculus.

    Text Solution

    |

  19. Differential coefficient of log2(log2x)w.r.t x is

    Text Solution

    |

  20. If f(x)=logx(logex) then f'(e)=

    Text Solution

    |