Home
Class 12
MATHS
Let y=f(x).phi(x) and z=f'(x).phi'(x). p...

Let `y=f(x).phi(x) and z=f'(x).phi'(x).` prove that `1/y*(d^2y)/(dx^2)=1/f*(d^2f)/(dx^2)+1/phi*(d^2phi)/(dx^2)+(2z)/(fphi).`

Promotional Banner

Topper's Solved these Questions

  • Differentiation

    A DAS GUPTA|Exercise Exercise|98 Videos
  • Differential Equation of the First Order

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Elementary Probability

    A DAS GUPTA|Exercise Exercise|137 Videos

Similar Questions

Explore conceptually related problems

Let y=f(x). phi(x) and z=f'(x). phi'(x) prove that (1)/(y)*(d^(2)y)/(dx^(2))=(1)/(f)*(d^(2)f)/(dx^(2))+(1)/(phi)*(d^(2)phi)/(dx^(2))+(2z)/(f phi)

Given F(x)=f(x)phi(x) and f'(x)phi'(x)=c then prove that F''(x)/F(x)=(f'')/f+(phi'')/phi+2c

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is

If x=f(t) and y=phi(t), prove that (d^(2)y)/(dx^(2))=(f_(1)phi_(2)-f_(2)phi_(1))/(f_(1)^(3)) where suffixes denote differentiation w.r.t.

If phi(x)=phi'(x) and phi(1)=2, then phi(3) equals

Let f'(x)=sin(x^(2)) and y=f(x^(2)+1) then (dy)/(dx) at x=1 is

If y=f(x)+(1)/(y) , then (dy)/(dx)=(y^(2)f'(x))/(1+y^(2))

Let f(x)=2^(2x-1) and phi(x)=-2^(x)+2x log2 If f'(x)>phi(x), then

A DAS GUPTA-Differentiation-Exercise
  1. Let y=tan^-1sqrt(x^2-1). Prove that (2x^2-1)((dy)/(dx))+x(x^2-1)((d^2...

    Text Solution

    |

  2. If y=(a x+b)/(x^2+c), prove that (2x y1+y)y3=3(x y2+y1)y2.

    Text Solution

    |

  3. Let y=f(x).phi(x) and z=f'(x).phi'(x). prove that 1/y*(d^2y)/(dx^2)=1/...

    Text Solution

    |

  4. Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)...

    Text Solution

    |

  5. Let f'(x) exists for all x != 0 and f(xy) = f(x) + f(y) for all real x...

    Text Solution

    |

  6. A function f is defined such that for all real x, y (a) f(x+y)=f(x).f(...

    Text Solution

    |

  7. A function f is defined such that for all real x, y (a) f(x+y)=f(x).f(...

    Text Solution

    |

  8. Let f(x+y)=f(x)+f(y) for all real x,y and f'(0) exists. Prove that f'(...

    Text Solution

    |

  9. Let f((x+y)/(2))=1/2 |f(x) +f(y)|for all real x and y, if f '(0) exist...

    Text Solution

    |

  10. A function f(x) is so defined that for all real x,{f(x)}^n = f(nx). Pr...

    Text Solution

    |

  11. Prove that the derivative of (a) an odd function is an even function;

    Text Solution

    |

  12. Prove that the derivative of a periodic function of period T is a peri...

    Text Solution

    |

  13. Let f(x) be a function satisfying the condition f(-x) = f(x) for all r...

    Text Solution

    |

  14. A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)...

    Text Solution

    |

  15. Find the sum of series sum(r=1)^nr.x^(r-1), using calculus.

    Text Solution

    |

  16. Differential coefficient of log2(log2x)w.r.t x is

    Text Solution

    |

  17. If f(x)=logx(logex) then f'(e)=

    Text Solution

    |

  18. If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

    Text Solution

    |

  19. Let f'(x) = sin(x^2) and y = f(x^2 +1) then dy/dx at x=1 is

    Text Solution

    |

  20. If x=cost , y=loget then at t=pi/2, (d^2y)/(dx^2)+((dy)/(dx))^2=

    Text Solution

    |