Home
Class 12
MATHS
A function f is defined such that for al...

A function f is defined such that for all real `x, y` (a) `f(x+y)=f(x).f(y)` (b) `f(x)=1+xg(x)` where `lim_(x->0) g(x)=1.` prove that `f;(x)=f(x)` and `f(x)=e^x`

Promotional Banner

Topper's Solved these Questions

  • Differentiation

    A DAS GUPTA|Exercise Exercise|98 Videos
  • Differential Equation of the First Order

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Elementary Probability

    A DAS GUPTA|Exercise Exercise|137 Videos

Similar Questions

Explore conceptually related problems

A function f is defined such that for all real x,y(a)f(x+y)=f(x).f(y)(b)f(x)=1+xg(x) where lim_(x rarr0)g(x)=1 prove that f;(x)=f(x) and f(x)=e^(x)

A function f(x) is defined for all real x and satisfied f(x+y)=f(xy),AA x,y. If f(1)=-1 then f(2006) equals

Let f(x+y)=f(x)f(y) and f(x)=1+xg(x)G(x) where lim_(x rarr0)g(x)=a and lim_(x rarr o)G(x)=b Then f'(x) is

Suppose the function f satisfies the conditions f(x+y)=f(x)f(y)AA x,y and f(x)=1+xg(x) where Lt_(x)rarr0(x)=1. show that f'(x) exists and f(x)=f(x)AA x

Let f:R to R be a function given by f(x+y)=f(x) f(y)"for all "x,y in R "If "f(x)=1+xg(x),log_(e)2, "where "lim_(x to 0) g(x)=1. "Then, f'(x)=

Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and f(x)=1+xg(x) where lim_(x to 0) g(x)=1 . Then f'(x) is equal to

Let f(x+y)=f(x)f(y)andf(x)=1+xg(x)phi(x)" where "lim_(x to 0) g(x)=a andlim_(x to 0) phi(x)=b . Then what is f(x) equal to?

Let f(x+y)=f(x)+f(y) for all real x,y and f'(0) exists.Prove that f'(x)=f'(0) for all x in R and 2f(x)=xf(2)

A DAS GUPTA-Differentiation-Exercise
  1. Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)...

    Text Solution

    |

  2. Let f'(x) exists for all x != 0 and f(xy) = f(x) + f(y) for all real x...

    Text Solution

    |

  3. A function f is defined such that for all real x, y (a) f(x+y)=f(x).f(...

    Text Solution

    |

  4. A function f is defined such that for all real x, y (a) f(x+y)=f(x).f(...

    Text Solution

    |

  5. Let f(x+y)=f(x)+f(y) for all real x,y and f'(0) exists. Prove that f'(...

    Text Solution

    |

  6. Let f((x+y)/(2))=1/2 |f(x) +f(y)|for all real x and y, if f '(0) exist...

    Text Solution

    |

  7. A function f(x) is so defined that for all real x,{f(x)}^n = f(nx). Pr...

    Text Solution

    |

  8. Prove that the derivative of (a) an odd function is an even function;

    Text Solution

    |

  9. Prove that the derivative of a periodic function of period T is a peri...

    Text Solution

    |

  10. Let f(x) be a function satisfying the condition f(-x) = f(x) for all r...

    Text Solution

    |

  11. A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)...

    Text Solution

    |

  12. Find the sum of series sum(r=1)^nr.x^(r-1), using calculus.

    Text Solution

    |

  13. Differential coefficient of log2(log2x)w.r.t x is

    Text Solution

    |

  14. If f(x)=logx(logex) then f'(e)=

    Text Solution

    |

  15. If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

    Text Solution

    |

  16. Let f'(x) = sin(x^2) and y = f(x^2 +1) then dy/dx at x=1 is

    Text Solution

    |

  17. If x=cost , y=loget then at t=pi/2, (d^2y)/(dx^2)+((dy)/(dx))^2=

    Text Solution

    |

  18. If f'(x)=sin x^2 and y=f(x^2+1) then dy/dx=

    Text Solution

    |

  19. If x=cost , y=loget then at t=pi/2, (d^2y)/(dx^2)+((dy)/(dx))^2=

    Text Solution

    |

  20. If tany = (2t)/(1-t^2) and sin x = (2t)/(1+t^2) then (dy)/(dx)=

    Text Solution

    |