Home
Class 12
MATHS
The value of lim(x rarr pi/4) sqrt(1 - s...

The value of `lim_(x rarr pi/4) sqrt(1 - sqrt(sin 2x))/(pi - 4x) is`

Promotional Banner

Topper's Solved these Questions

  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Main Tests

    A DAS GUPTA|Exercise Exercise|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr(pi)/(4))(sqrt(1-sqrt(sin2x)))/(pi-4x)is

lim_(x rarr pi/4)(sqrt(cos x)-sqrt(sin x))/(x-(pi)/(4))

lim_(x rarr0)(sqrt(1+sin x)-sqrt(1-sin x))/(x)

lim_(x rarr pi)(sqrt(1-cos x)-sqrt(2))/(sin^(2)x)

The value of lim_(x rarr0)(sqrt(4+x)-sqrt(4-x))/(sin^(-1)2x)=

lim_(x rarr(pi)/(2))(sqrt(2)-sqrt(1+sin x))/(cos^(2)x)

Find the value of lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)

The value of lim_(xto(pi)/4)(4sqrt(2)-(cosx+sinx)^(5))/(1-sin2x) is

lim_ (x rarr pi) ((sin (pi-x)) / (pi (pi-x)))

lim_(x rarr pi)(4x+3)/(x-2)