Home
Class 12
MATHS
lim(x rarr oo) (sqrt(x^2-x+1)-a x-b)=0, ...

`lim_(x rarr oo) (sqrt(x^2-x+1)-a x-b)=0,` then `a+b=`

Promotional Banner

Topper's Solved these Questions

  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Main Tests

    A DAS GUPTA|Exercise Exercise|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

If lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0 then the value of a and b are given by:

lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)

lim_(x rarr oo)(sqrt(x-a)-sqrt(x-b))

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

lim_(x rarr oo)(sqrt(x^(2)-x-1)-ax-b)=0 where a>0, then there exists at least one a and b for which point (a,2b) lies on the line

The value of lim_(x rarr oo)[sqrt(x^(2)+x+1)-(ax+b)]=0, then

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_ (x rarr oo) (sqrt (x ^ (2) -8x) + x)

lim_(x rarr oo)(x( sqrt(1+x^(2))-x))