Home
Class 12
MATHS
The value of lim(n->oo)(sum(r=1)^100(n+r...

The value of `lim_(n->oo)(sum_(r=1)^100(n+r)^(10))/(n^(10)+1 0^(10))` is equal to

Promotional Banner

Topper's Solved these Questions

  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Main Tests

    A DAS GUPTA|Exercise Exercise|8 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sum_(r=1)^(100)(n+r)^(10))/(n^(10)+10^(10)) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

The value of lim_(n rarr oo)sum_(r=n^(2))^(n^(2)+9+6n)(1)/(sqrt(r)) is equal to