Home
Class 12
MATHS
lim(x->0)(x e^x-log(1+x))/(x^2) equals...

`lim_(x->0)(x e^x-log(1+x))/(x^2)` equals

A

`3/2`

B

`2/3`

C

0

D

1

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Main Tests

    A DAS GUPTA|Exercise Exercise|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(xe^(x)-log(1+x))/(x^(2)) equals

lim_(xrarr0) (xcos x=log(1+x))/(x^2) equals

(7) Find the value of lim_(x->0) ((e^(x)-1) log(1+x))/(x^(2))

lim_(x rarr0)(log(1+x))/(x)=1

lim_(x rarr0)(log_(e)(1+x))/(x)

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(x rarr0)(e^(x)-1)/(log(1+x))

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals