Home
Class 12
MATHS
Lim(x->0) {x(1+acosx)-bsinx}/x^3=1 then...

`Lim_(x->0) {x(1+acosx)-bsinx}/x^3=1` then

A

a=b

B

a+b=0

C

2a=b

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Main Tests

    A DAS GUPTA|Exercise Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate find a and b if \ ("Lim")_(x->0)(x(1+acosx)-bsinx)/(x^3)=1

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

F(x) is the function such that (lim)_(x->0)(f(x))/x=1\ a n d\ (lim)_(x->0)(x(1+acosx))/((f(x))^3)=1 , then find the value of a

lim_(x rarr0)(x(1+a cos x)-b sin x)/(x^(3))=1 then

Let lim_(x rarr0)(f(x))/(x)=1 and lim_(x rarr0)(x(1+p cos x)-q sin x)/((f(x))^(3))=1 then

lim_(x->0) (3x+1)/(x+3)

lim_(x->0) (x-1)/(3x-6)

If lim_(x rarr0)(x(1+mecx)-n sin x)/(x^(3))=1 then

lim_(x to 0) (x^3 sin(1/x))/sinx