Home
Class 12
MATHS
If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and...

If `f(x)=cot^(-1) ((3x-x^3)/(1-3x^2))` and `g(x)=cos^(-1)((1-x^2)/(1+x^2))` then `lim_(x->a) (f(x)-f(a))/(g(x)-g(a))`

A

`2/3(1+a^2)`

B

`3/2`

C

`3/2(1+a^2)`

D

`-3/2`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • Limit, Indetermine Form

    A DAS GUPTA|Exercise Exercise|64 Videos
  • Inverse Circular Functions

    A DAS GUPTA|Exercise Exercise|45 Videos
  • Main Tests

    A DAS GUPTA|Exercise Exercise|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) and g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x rarr a)(f(x)-f(a))/(g(x)-g(a))

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :

If quad tan^(-1)(3x-x^(3))/(1-3x^(2)),g(x)=cos^(-1)(1-x^(2))/(1+x^(2)) and 0

If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4), and h(x)=-(2(2x+1))/(x^(2)+x-12) then lim_(x rarr3)[f(x)+g(x)+h(x)] is (a) -2(b)-1 (c) -(2)/(7) (d) 0

Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)) , then fog(x) is

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)