Home
Class 11
MATHS
Prove that (cos(pi+x)cos(-x))/(sin(pi-...

Prove that
`(cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x`

Text Solution

Verified by Experts

The correct Answer is:
`cot^(2)x`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.5|16 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.2|10 Videos
  • STRAIGHT LINES

    KUMAR PRAKASHAN|Exercise Question of Module (Knowledge Test :)|18 Videos

Similar Questions

Explore conceptually related problems

Prove that cos((3pi)/(2)+x)cos(2pi+x)[cot((3pi)/(2)-x)+cot(2pi+x)]=1

Prove that (cos(4x)+cos(3x)+cos(2x))/(sin(4x)+sin(3x)+sin(2x))=cot(3x)

Prove that cos((3pi)/(2)+x)cos(2pi+x).{cot((3pi)/(2)-x)+cot(2pi+x)}=1

Prove that (cos(9x)-cos(5x))/(sin(17x)-sin(3x))=-(sin(2x))/(cos(10x))

Prove that cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

cos(2pi -x) cos (-x) - sin(2pi +x) sin (-x) = 0

Prove that, cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2) .

Prove that cos((3pi)/(4)+x)-cos((3pi)/(4)-x)=-sqrt(2)sinx