Home
Class 11
MATHS
Prove that sin(n+1)xsin(n+2)x+cos(n+1)...

Prove that
`sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx`

Text Solution

Verified by Experts

The correct Answer is:
`cosx`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.5|16 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.2|10 Videos
  • STRAIGHT LINES

    KUMAR PRAKASHAN|Exercise Question of Module (Knowledge Test :)|18 Videos

Similar Questions

Explore conceptually related problems

Prove that cos4x=1-8sin^(2)xcos^(2)x

Prove that (n!) (n + 2) = [n! + (n + 1)!]

sin(n+1)x.cosnx-cos(n+1)x.sinnx= …………

Prove that cos^(2)2x-cos^(2)6x=sin4xsin8x

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

Prove that, cos2xcos""(x)/(2)-cos3xcos""(9x)/(2)=sin5xsin""(5x)/(2) .

Differentiate sin^(m) x.cos^(n) x

Prove that , sin theta + sin 2theta + ……+ sin n theta = ( (sin( n theta/(2)) sin ((n+1)/(2))theta))/(sin theta/2) , for all n in N .

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Prove that , (1)/(n+1) + (1)/(n+2) + ………….+ (1)/(2n) gt 13/24 for all natural numbers n > 1