Home
Class 11
MATHS
Prove that sin^(2)6x-sin^(2)4x=sin2xsi...

Prove that
`sin^(2)6x-sin^(2)4x=sin2xsin10x`

Text Solution

Verified by Experts

The correct Answer is:
`sin2x.sin10x`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.5|16 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.2|10 Videos
  • STRAIGHT LINES

    KUMAR PRAKASHAN|Exercise Question of Module (Knowledge Test :)|18 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(2)2x-cos^(2)6x=sin4xsin8x

Prove that cos4x=1-8sin^(2)xcos^(2)x

Prove that : sin(3x)+sin(2x)-sinx=4sinxcos((x)/(2))cos((3x)/(2))

Prove that sin(2x)+2sin(4x)+sin(6x)=4cos^(2)xsin4x

Prove that : sinx+sin(3x)+sin(5x)+sin(7x)=4cosxcos(2x)sin(4x)

Prove that sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

Prove that : ([sin(7x)+sin(5x)]+[sin(9x)+sin(3x)])/([cos(7x)+cos(5x)]+[cos(9x)+cos(3x)])=tan(6x)

Prove that (sinx-sin3x)/(sin^(2)x-cos^(2)x)=2sinx

Prove that cot4x(sin5x+sin3x)=cotx(sin5x-sin3x)

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x