Home
Class 11
MATHS
Prove that cos^(2)2x-cos^(2)6x=sin4xsi...

Prove that
`cos^(2)2x-cos^(2)6x=sin4xsin8x`

Text Solution

Verified by Experts

The correct Answer is:
`sin4xsin8x`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.5|16 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.2|10 Videos
  • STRAIGHT LINES

    KUMAR PRAKASHAN|Exercise Question of Module (Knowledge Test :)|18 Videos

Similar Questions

Explore conceptually related problems

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

Prove that sin^(2)6x-sin^(2)4x=sin2xsin10x

Prove that cos4x=1-8sin^(2)xcos^(2)x

Prove that (cos(9x)-cos(5x))/(sin(17x)-sin(3x))=-(sin(2x))/(cos(10x))

Prove that, cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2) .

Prove that (cos(4x)+cos(3x)+cos(2x))/(sin(4x)+sin(3x)+sin(2x))=cot(3x)

Prove that, (cos7x+cos5x)/(sin7x-sin5x)=cotx

Find the number of solutions of sin^(2) x cos^(2)x=1+cos^(2)xsin^(4) x in the interval [0,pi]

Prove that : sin(3x)+sin(2x)-sinx=4sinxcos((x)/(2))cos((3x)/(2))