Home
Class 11
MATHS
Prove that cos4x=1-8sin^(2)xcos^(2)x...

Prove that
`cos4x=1-8sin^(2)xcos^(2)x`

Text Solution

Verified by Experts

The correct Answer is:
`1-8sin^(2)xcos^(2)x`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.5|16 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.2|10 Videos
  • STRAIGHT LINES

    KUMAR PRAKASHAN|Exercise Question of Module (Knowledge Test :)|18 Videos

Similar Questions

Explore conceptually related problems

cos 4x =1- 8 sin ^(2) x cos ^(2) x

Prove that (sinx-sin3x)/(sin^(2)x-cos^(2)x)=2sinx

Prove that cos6x=32cos^(6)x-48cos^(4)x+18cos^(2)x-1

Prove that cos^(2)2x-cos^(2)6x=sin4xsin8x

Prove that sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

Prove that (cos(4x)+cos(3x)+cos(2x))/(sin(4x)+sin(3x)+sin(2x))=cot(3x)

Prove that f(x)=sin x+3^(1/2) cos x has maximum value at x=(pi)/(6)

Prove that sin^(2)6x-sin^(2)4x=sin2xsin10x

If sintheta + sin^(2)theta = 1 , prove that cos^(2)theta + cos^(4)theta = 1

Integrate the functions (sin^(8)-cos^(8)x)/(1-2sin^(2)xcos^(2)x)