Home
Class 11
MATHS
If any triangle ABC, a=18,b=24,c=30 si...

If any triangle ABC, `a=18,b=24,c=30`
`sinA,sinB,sinC`

Text Solution

Verified by Experts

The correct Answer is:
`therefore sinC=1 (because Cle(pi)/(2))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE : 3|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|122 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.4|9 Videos
  • STRAIGHT LINES

    KUMAR PRAKASHAN|Exercise Question of Module (Knowledge Test :)|18 Videos

Similar Questions

Explore conceptually related problems

If any triangle ABC, a=18,b=24,c=30 cosA,cosB,cosC

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

If A,B and C are the angle of a triangle show that (i) |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0. (ii) |{:(-1+CcosB,cosC+cosB,cosB),(cosC+cosA,-1+cosA,cosB),(-1+cosB,-1+cosA,-1):}|=0.

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that asin(B-C)+bsin(C-A)+csin(A-B)=0 .

a=18,b=24,c=30 . Find the value of cosA .

For any triangle ABC, prove that : (a-b)/(c )=(sin((A-B)/(2)))/(cos((C)/(2)))

For any triangle ABC, prove that : acosA+bcosB+c cosC=2asinBsinC

If vec x and vec y are two non-collinear vectors and a triangle ABC with side lengths a,b,c satisfying (20a-15b)vec x+(15b-12c)vec y+(12c-20a)(vec x xx vec y) = vec0 . Then triangle ABC is:

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))