Home
Class 11
MATHS
For any triangle ABC, prove that : a(b...

For any triangle ABC, prove that :
`a(bcosC-c cosB)=b^(2)-c^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`b^(2)-c^(2)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE : 3|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|122 Videos
  • TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE 3.4|9 Videos
  • STRAIGHT LINES

    KUMAR PRAKASHAN|Exercise Question of Module (Knowledge Test :)|18 Videos

Similar Questions

Explore conceptually related problems

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that : (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0 .

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For any triangle ABC, prove that : acosA+bcosB+c cosC=2asinBsinC

For any triangle ABC, prove that : (a+b)/(c)=(cos((A-B)/(2)))/(sin""(C)/(2))

For any triangle ABC, prove that : ((b^(2)-c^(2))/(a^(2)))sin2A+((c^(2)-a^(2))/(b^(2)))sin2B+((a^(2)-b^(2))/(c^(2)))sin2C=0

For any triangle ABC, prove that : (a-b)/(c )=(sin((A-B)/(2)))/(cos((C)/(2)))

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))