Home
Class 12
MATHS
Solve the following equations : 2tan^(...

Solve the following equations :
`2tan^(-1)(cosx)=tan^(-1)(2cosecx)`

Text Solution

Verified by Experts

The correct Answer is:
`x=pi/4`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise TEXTBOOK BASED MCQs|57 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise NCERT EXAMPLAR PROBLEMS -SHORT ANSWER TYPE QUESTIONS|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise EXERCISE - 2.2|21 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos

Similar Questions

Explore conceptually related problems

Solve : 2tan^(-1)(cosx)=tan^(-1)(2cosecx) .

Solve the following equations : tan^(-1)(2x)+tan^(-1)(3x)=pi/4

Solve the following equations : tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x

Solve the following equations : tan^(-1)(1)+cos^(-1)(1/sqrt2)=sin^(-1)x

Solve the equation : 2 tan^(-1) ( 2x - 1) = cos ^(-1) x .

Integrate the following functions : tan^(-1)((2x)/(1-x^(2)))

Prove the followings : If tan^(-1)((yz)/(xr))+tan^(-1)((zx)/(yr))+tan^(-1)((xy)/(zr))=pi/2 then x^(2)+y^(2)+z^(2)=r^(2) .

Find the general solution of the following equations : sec^(2)2x=1-tan2x

Prove the following : tan^(-1)(1/3)+1/2("tan"^(-1)1/7)=pi/8