Home
Class 12
MATHS
Show that, sin^(-1)(2xsqrt(1-x^(2)))=2...

Show that,
`sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/sqrt2lexle1/sqrt2`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - A)|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - B)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|58 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-D)|2 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos

Similar Questions

Explore conceptually related problems

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/sqrt2lexle1

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]

Write the following functions in the simplest from : sin^(-1)(2xsqrt(1-x^(2))),-1/sqrt2lexle1/sqrt2

Find (dy)/(dx) in the following y= sin^(-1) (2x sqrt(1-x^(2))), -(1)/(sqrt2) lt x lt (1)/(sqrt2)

Find (dy)/(dx) in the following: y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt2) lt x lt 1

Prove that : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/sqrt2lexle1

Find the sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

Method of integration by parts : int(cos^(-1)x+cos^(-1)sqrt(1-x^(2)))dx=Ax+f(x)sin^(-1)x-2sqrt(1+x^(2))+c,AAx""in[-1,0) then ..........

cos^(-1)(sqrt3/2)+2sin^(-1)(sqrt3/2) is _____