Home
Class 12
MATHS
For three vectors vec(a),vec(b) and vec(...

For three vectors `vec(a),vec(b)` and `vec( c ),vec(a)+vec(b)+vec( c )=vec(0)|vec(a)|=3,|vec(b)|=4,|vec( c )|=5`, then evaluate
`2(vec(a)*vec(b)+vec(b)*vec( c )+vec( c )*vec(a))`.

A

`100`

B

`50`

C

`-25`

D

`-50`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - A)|4 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - B)|7 Videos
  • APPLICATION OF INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER ( SECTION -D)|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos

Similar Questions

Explore conceptually related problems

For vectors vec(a),vec(b) and vec( c ),vec(a).vec(b)=vec(a).vec( c ) and vec(a)xx vec(b)=vec(a)xx vec( c ),vec(a) ne vec(0) then show that vec(b)=vec( c ) .

If vec(a)+vec(b)+vec( c )=0 and |vec(a)|=6,|vec(b)|=5,|vec( c )|=7 then find the angle between the vectors vec(b) and vec( c ) .

Prove that [vec(a)+vec(b), vec(b)+vec( c ), vec( c )+vec(a)]=2[vec(a),vec(b),vec( c )] .

Prove that [vec(a),vec(b),vec( c )+vec(d)]=[vec(a),vec(b),vec( c )]+[vec(a),vec(b),vec(d)] .

Three vectors vec(a),vec(b) and vec( c ) satisfy the condition vec(a)+vec(b)+vec( c )=vec(0) . Evaluate the quantity mu=vec(a).vec(b)+vec(b).vec( c )+vec( c ).vec(a) , if |vec(a)|=1,|vec(b)|=4 and |vec( c )|=2 .

If |vec(a)|=2|vec(b)|=5 and |vec(a)xx vec(b)|=8 then find vec(a).vec(b) .

Let vec(a),vec(b) and vec( c ) be three unit vectors such that vec(a),+vec(b)+vec( c )=vec(0) . If lambda=vec(a)*vec(b)+vec(b)*vec( c )+vec( c )*vec(a) and vec(d)=vec(a)xx vec(b)+vec(b)xx vec( c )+vec( c )xx vec(a) then the ordered pair (lambda, vec(d)) is equal to :

(vec(a)xx vec(b))xx vec( c )=vec(a)xx(vec(b)xx vec( c )) . If vec(a)*vec( c ) ……………

Find |vec(a)| and |vec(b)| , if (vec(a)+vec(b)).(vec(a)-vec(b))=8 and |vec(a)|=8|vec(b)| .