Home
Class 12
MATHS
For sets S= { pi, pi^(2) , pi^(3) } and ...

For sets `S= { pi, pi^(2) , pi^(3) } and T= {e, e^(2) , e^(3) }` if `F^(-1) : T to S` is defined as `F^(-1) = { ( e, pi^(3) ) , (e^(2) , pi^(2) ), (e^(2) , pi)}`, then function `F=.........`

A

`{(e^(2) , pi) ,(e^(3) , pi^(2) ) , (e, pi^(3) ) }`

B

`{ (pi, e^(2) ), (pi^(3) , e) ,(pi^(2) , e^(3) ) }`

C

`{ (pi^(3) , e),(pi^(2) , e^(2) ),(pi, e^(3) )}`

D

`{(pi,e),(pi^(2) ,e^(2) ), (pi^(3) , e^(3) ) }`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - A)|4 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - B)|7 Videos
  • APPLICATION OF INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER ( SECTION -D)|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos

Similar Questions

Explore conceptually related problems

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

2sin^(2)((pi),(4))+2cos^2((pi),(4))+sec^2((pi),(3)) has value .........

If sqrt(3) sin x - cos x ="min"_(alpha in R){2,e^(2),pi, alpha^(2)-4alpha +7} , then

Let S={1, 2, 3, 4, 5, 6} and E={1, 3, 5} then E' is ……….

int_(0)^(pi)e^(x)cos2xdx=.............

f(x)= sin^(2)x + sin^(2) (x + (pi)/(3)) + cos x cos (x + (pi)/(3)) then f'(x) = ………

If f(x) {(mx + 1,x le (pi)/(2)),((sin x)+ n,x gt (pi)/(2)):} is continuous at x= (pi)/(2) , then …...

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Prove that the function f given by f (x) = log |cos x| is decreasing on (0,(pi)/(2)) and increasing on ((3pi)/(2) ,2pi) .

f:[-(pi)/2,pi/2]rarr[-1,1] is a bijection , if ......