Home
Class 12
MATHS
If Delta = abs{:(x+y+z^(2) , x^(2) + y+ ...

If `Delta = abs{:(x+y+z^(2) , x^(2) + y+ z, x+y^(2) + z),(z^2, x^2, y^2),(x+y,y+z,x+z):}`, (where `( x ne y ne z) x, y, z in R- {0}` ) then `Delta= ........`

A

`0`

B

`1`

C

`x+y+z`

D

`x^2 + y^2 + z^2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - A)|4 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - B)|7 Videos
  • APPLICATION OF INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER ( SECTION -D)|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos

Similar Questions

Explore conceptually related problems

If z=x+iy , where x and y are real numbers and |x|+|y| lt= k|z| then k=.....

Expand : (x+2y + 7z)^(2)

Expand : (5x + y + 2z)^(2)

show that [((x+y)^2 , zx , zy),( zx, (z+y)^2 ,xy),(zy,xy,(z+x)^2)]=2xyz (x +y+z)^3

Verify that x ^(3) + y ^(3) + z ^(3) - 3xyz =1/2 (x + y + z) [(x-y)^(2) + (y-z) ^(2) + (z-x) ^(2) ]

Find the product of (5x - y +z) (5x - y +z)

Prove that |{:(x^2,y^2,z^2),((x+1)^2,(y+1)^2,(z+1)^2),((x-1)^2,(y-1)^2,(z-1)^2):}|=-4(x-y)(y-z)(z-x)

If x,y,z are different and Delta=|{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3):}| =0 then show that 1+xyz=0

Matrix A=[{:(0,2y,z),(x,y,-z),(x,-y,z):}] if A A^(T)=I then , (x,y,z)=(...,...,...)(x,y,zgt0)

If the lines 2x-y+3z + 4 = 0=ax + y-z + 2 and x-3y + z=0 =x + 2y + z +1 are coplannar then the value of a is ...........