Home
Class 12
MATHS
int(0)^(pi) cos^(3)x . Sin^(4) x dx = …....

`int_(0)^(pi) cos^(3)x . Sin^(4) x dx = …... `.

A

`-pi`

B

`0`

C

`pi`

D

`2pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - A)|4 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - B)|7 Videos
  • APPLICATION OF INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER ( SECTION -D)|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 5 (Section-D)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluation of definite integrals by subsitiution and properties of its : int_(0)^(pi)cos^(3)x.sin^(4)xdx=..........

int_(0)^(pi//4) | sin x - cos x | dx = . . . .

int_(-pi//2)^(pi//2) ( sin ^(3) x . cos ^(3) x)/(cos^(2) x - sin ^(2) x) dx = . . . .

Evaluate int _(-pi//4)^(pi//4)x^(3) sin ^(4) x dx

Evaluate the definite integrals int_(0)^(pi/4)(sinxcosx)/(cos^(4)x+sin^(4)x)dx

Fundamental theorem of definite integral : int_(0)^(pi/4)(sin^(9)x)/(cos^(11)x)dx=........

int_(0)^(100pi) |cos x|dx = ____

int sin^(-1)(cos x)dx=....

int (dx)/(sin^(2)x cos^(2)